Contents

About the Editors XI
List of Contributors XIII

1 Catalysis with Cytochrome P450 Monoxygenases 1
 Viada B. Urlacher
 1.1 Properties of Cytochrome P450 Monoxygenases 1
 1.1.1 General Aspects 1
 1.1.2 Chemistry of Substrate Oxidation by P450 Monoxygenases 2
 1.1.3 Redox Partners of P450 Monoxygenases 4
 1.1.4 Major Reactions Catalyzed by P450 Monoxygenases 5
 1.2 Biotechnological Applications of P450 Monoxygenases 7
 1.2.1 Human P450s in Drug Development 7
 1.2.2 Microbial Oxidation for Synthesis of Pharmaceutical Intermediates 8
 1.2.3 Plant P450s and Transgenic Plants 10
 1.3 Optimization of P450 Monoxygenase-Based Catalytic Systems 12
 1.3.1 Replacement or Regeneration of the Cofactor NAD(P)H 12
 1.3.2 Engineering of New Substrate Specificities of P450s 14
 1.3.2.1 Engineering of Bacterial P450s 14
 1.3.2.2 Engineering of Mammalian P450s 16
 1.3.3 Stability of P450s 17
 1.3.3.1 Thermostability of P450s 17
 1.3.3.2 Process Stability of P450s 17
 1.4 Outlook 18
 References 19

2 Biocatalytic Hydrolysis of Nitriles 27
 Dean Brady
 2.1 The Problem with Nitrile Hydrolysis 27
 2.2 Biocatalysis as a Green Solution 28
 2.3 Nitrile Biocatalysts 29
2.3.1 Nitrilase 29
2.3.2 Nitrile Hydratase 30
2.3.3 Amidase 32
2.4 Synthetic Utility 32
2.4.1 Chemo selectivity 32
2.4.2 Regioselectivity 33
2.4.3 Enantioselectivity 33
2.5 Commercial Examples 35
2.5.1 Chemical Synthesis 35
2.5.1.1 Acrylamide 35
2.5.1.2 Nicotinamide and Nicotinic Acid 35
2.5.1.3 Atorvastatin 36
2.5.1.4 5-Cyanovaleramide 37
2.5.1.5 Mandelic Acid 37
2.5.1.6 Pyrazinecarboxylic Acid 38
2.5.1.7 (E)-2-Methyl-2-Butenoic Acid 38
2.5.1.8 1,5-Dimethyl-2-Piperidone, a Lactam 38
2.5.1.9 3-Hydroxyvaleric Acid 39
2.5.2 Surface Modification of Polymers 40
2.5.3 Bioremediation 41
2.6 Challenges 41
2.6.1 Biocatalyst Stability 41
2.6.2 Availability 43
2.7 Conclusion 44
References 45

3 Biocatalytic Processes Using Ionic Liquids and Supercritical Carbon Dioxide 51
Pedro Lozano, Teresa De Diego, and José L. Iborra
3.1 Introduction 51
3.2 Biocatalytic Processes in Ionic Liquids 52
3.2.1 Solvent Properties of ILs for Biocatalysis 52
3.2.2 Enzymes in ILs 54
3.3 Biocatalytic Processes in Supercritical Carbon Dioxide 59
3.3.1 Basic Properties of scCO₂ 59
3.3.2 Enzymes in scCO₂ 61
3.4 Biocatalysis in IL–scCO₂ Biphasic Systems 63
3.4.1 Phase Behavior of IL–scCO₂ Systems 64
3.4.2 Biocatalytic Processes in IL–scCO₂ Biphasic Systems 66
3.5 Future Trends 69
References 70

4 Thiamine-Based Enzymes for Biotransformations 75
Martina Pohl, Dörte Gocke, and Michael Müller
4.1 Introduction 75
4.1.1 Thiamine Diphosphate 76
4.1.2 Enzyme Structures 79
4.1.3 Reaction Mechanism 79
4.1.3.1 Lyase and Carboligase Activity Occur at the Same Active Site 79
4.2 Carboligation: Chemo- and Stereoselectivity 81
4.2.1 Carboligations with Two Different Aldehydes 81
4.2.1.1 Chemoselectivity 81
4.2.1.2 Stereoselectivity 83
4.3 Selected Enzymes 84
4.3.1 2-Keto Acid Decarboxylases 84
4.3.1.1 Pyruvate Decarboxylases 84
4.3.1.2 Branched-Chain Keto Acid Decarboxylases 90
4.3.1.3 Benzoylformate Decarboxylases 90
4.3.1.4 Phenylpyruvate Decarboxylases/Indole-3-pyruvate Decarboxylases 91
4.3.2 Benzaldehyde Lyases 92
4.3.3 Acetohydroxy Acid Synthases 94
4.4 Enzymes for Special Products 94
4.4.1 Mixed Carboligation of Benzaldehyde and Acetaldehyde 94
4.4.2 Mixed Carboligation of Larger Aliphatic and Substituted Aromatic Aldehydes 97
4.4.3 Self-Ligation of Aromatic Aldehydes 97
4.4.4 Self-Ligation of Aliphatic Aldehydes 97
4.4.5 Carboligation of Unstable Aldehydes 98
4.4.5.1 LKdcA Catalyzes the Mixed Carboligation of CH-Acidic Aldehydes and Acetaldehyde 98
4.4.6 Accessing (S)-2-Hydroxy Ketones 98
4.5 Investigation of Structure–Function Relationships 100
4.5.1 Deducing General Principles for Chemo- and Enantioselectivity 100
4.5.2 Substrate Channel 103
4.5.3 Proton Relay System 103
4.5.4 Donor Binding Site 103
4.5.5 Acceptor Binding Site 104
4.5.5.1 The S-Pocket Approach 105
4.5.5.2 S-Pockets are Widespread Among ThDP-dependent Enzymes but Not Always Accessible 105
4.5.5.3 Carboligation of Two Similar Aldehydes 107

References 108

5 Baeyer–Villiger Monooxygenases in Organic Synthesis 115
Anett Kirschner and Uwe T. Bornscheuer
5.1 Introduction 115
5.2 General Aspects of the Baeyer–Villiger Oxidation 116
5.2.1 Mechanistic Aspects 116
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Versus Enzymatic Baeyer–Villiger Oxidation</td>
<td>116</td>
</tr>
<tr>
<td>Biochemistry of Baeyer–Villiger Monooxygenases</td>
<td>119</td>
</tr>
<tr>
<td>Catalytic Mechanism</td>
<td>119</td>
</tr>
<tr>
<td>Structural Features</td>
<td>120</td>
</tr>
<tr>
<td>Application of Baeyer–Villiger Monooxygenases in Organic Chemistry</td>
<td>121</td>
</tr>
<tr>
<td>Isolated Enzymes Versus Whole Cells</td>
<td>121</td>
</tr>
<tr>
<td>Baeyer–Villiger Monooxygenases Relevant for Synthetic Applications</td>
<td>124</td>
</tr>
<tr>
<td>Representative Synthetic Applications</td>
<td>126</td>
</tr>
<tr>
<td>Kinetic Resolutions of Racemic Ketones</td>
<td>126</td>
</tr>
<tr>
<td>Desymmetrization of Prochiral Ketones</td>
<td>130</td>
</tr>
<tr>
<td>Regiodivergent Transformations</td>
<td>135</td>
</tr>
<tr>
<td>Large-Scale Application</td>
<td>138</td>
</tr>
<tr>
<td>Heteroatom Oxidation</td>
<td>138</td>
</tr>
<tr>
<td>Protein Engineering</td>
<td>140</td>
</tr>
<tr>
<td>Conclusions and Perspectives</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td>143</td>
</tr>
</tbody>
</table>

6 Bioreduction by Microorganisms

Leandro Helgueira Andrade and Kaoru Nakamura

6.1 Introduction 151
6.2 Enzymes and Coenzymes 152
6.2.1 Classification 152
6.2.2 Hydrogen Source 153
6.2.2.1 Alcohols as a Hydrogen Source for Reduction 153
6.2.2.2 Sugars as a Hydrogen Source for Reduction 153
6.2.2.3 Formate as a Hydrogen Source for Reduction 154
6.2.2.4 Molecular Hydrogen as a Hydrogen Source for Reduction 154
6.2.2.5 Light Energy as a Hydrogen Source for Reduction 155
6.2.2.6 Electric Power as a Hydrogen Source for Reduction 155
6.3 Methodologies 156
6.3.1 Search for the Ideal Biocatalysts 156
6.3.1.1 Biocatalysts from Screening Techniques 157
6.3.1.2 Biocatalysts from Recombinant Microorganisms 158
6.3.2 Reaction Systems for Bioreduction 159
6.3.2.1 Bioreduction Using Whole-Cell Biocatalysts in an Aqueous Solvent 160
6.3.2.2 Bioreduction Using Whole-Cell Biocatalysts in a Conventional Organic Solvent and an Aqueous–Organic Solvent 161
6.3.2.3 Bioreduction Using Whole-Cell Biocatalysts in Supercritical Carbon Dioxide, Ionic Liquids and Fluorous Solvents 164
6.3.2.4 Bioreduction Using Isolated Enzymes 165
6.4 Conclusion 167
References 167
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>NiFe</td>
<td>217</td>
</tr>
<tr>
<td>8.2.2</td>
<td>NiFeSe</td>
<td>219</td>
</tr>
<tr>
<td>8.2.3</td>
<td>FeFe</td>
<td>219</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Fe (non-Fe-S) Hydrogenase (Hmd)</td>
<td>220</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Biosynthesis of the Active Sites</td>
<td>221</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental Approaches</td>
<td>221</td>
</tr>
<tr>
<td>8.3.1</td>
<td>EPR and Related Methods</td>
<td>222</td>
</tr>
<tr>
<td>8.3.2</td>
<td>FTIR Spectroscopy</td>
<td>222</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Protein Film Voltammetry (PFV)</td>
<td>223</td>
</tr>
<tr>
<td>8.4</td>
<td>Catalytic Mechanisms of Hydrogenases</td>
<td>224</td>
</tr>
<tr>
<td>8.5</td>
<td>Progress So Far with Biological Hydrogen Production Systems</td>
<td>225</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Fermentation</td>
<td>225</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Oxygenic Photosynthesis</td>
<td>226</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Anaerobic Photosynthesis</td>
<td>227</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Emulation: Hydrogenase Model Compounds</td>
<td>228</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Hydrogenases on Electrodes</td>
<td>230</td>
</tr>
<tr>
<td>8.5.5.1</td>
<td>Sensitivity and Resistance of Hydrogenases to O₂, CO and Other Inhibitory Gases</td>
<td>233</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion and Future Directions</td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>236</td>
</tr>
</tbody>
</table>

9 \textbf{PAH Bioremediation by Microbial Communities and Enzymatic Activities} 243

Vincenzo Andreoni and Liliana Gianfreda

9.1 Introduction 243
9.2 Fate of PAHs in the Environment 244
9.3 Population of PAH-Polluted Environments 246
9.4 Microbial Degradation of PAHs 248
9.5 Dioxygenases as Key Enzymes in the Aerobic Degradation of PAHs and Markers of Bacterial Degradation 251
9.6 PAH Transformation by Extracellular Fungal Enzymes 254
9.7 \textit{In Situ} Strategies to Remediate Polluted Soils 257
9.7.1 Intrinsic or Natural Attenuation 257
9.7.2 Biostimulation and Bioaugmentation 258
9.7.3 Phytoremediation 261
9.7.4 Feasibility of Bioremediation Technologies 264
References 265

Index 269