Contents

Preface XIII

1 Carbon—Element of Many Faces 1
1.1 History 1
1.2 Structure and Bonding 6
1.2.1 Graphite and Its Structure 7
1.2.2 Diamond and Its Structure 9
1.2.3 Structure of Other Carbon Allotropes 10
1.2.4 Liquid and Gaseous Carbon 13
1.3 Occurrence and Production 13
1.3.1 Graphite and Related Materials 13
1.3.2 Diamond 17
1.4 Physical Properties 20
1.4.1 Graphite and Related Materials 21
1.4.2 Diamond 23
1.5 Chemical Properties 24
1.5.1 Graphite and Related Materials 26
1.5.2 Diamond 29
1.6 Application and Perspectives 29
1.6.1 Graphite and Related Materials 30
1.6.2 Diamond 30
1.6.3 Other Carbon Materials 30
1.7 Summary 31

2 Fullerenes—Cages Made from Carbon 33
2.1 History—The Discovery of New Carbon Allotropes 33
2.1.1 Theoretical Predictions 33
2.1.2 Experimental Proof 34
2.2 Structure and Bonding 36
2.2.1 Nomenclature 36
2.2.2 The Structure of C_{60} 37
2.2.3 Structure of Higher Fullerenes and Growth Mechanisms 40
2.2.4 Structure of Smaller Carbon Clusters 45
2.2.5 Structure of Heterofullerenes 46
2.3 Occurrence, Production, and Purification 47
2.3.1 Fullerene Preparation by Pyrolysis of Hydrocarbons 48
2.3.2 Partial Combustion of Hydrocarbons 49
2.3.3 Arc Discharge Methods 50
2.3.4 Production by Resistive Heating 51
2.3.5 Rational Syntheses 52
2.3.6 Enrichment and Purification 54
2.3.7 Preparation of Heterofullerenes 56
2.4 Physical Properties 57
2.4.1 Properties of C_{60} and C_{70} 57
2.4.1.1 Solubility 57
2.4.1.2 Spectroscopic Properties 59
2.4.1.3 Thermodynamic Properties 63
2.4.1.4 Solid C_{60} 64
2.4.2 Properties of Higher Fullerenes 65
2.5 Chemical Properties 66
2.5.1 General Considerations on Fullerene Chemistry 67
2.5.1.1 Typical Reactions of Fullerenes 67
2.5.1.2 Regiochemistry of Additions to Fullerenes 68
2.5.1.3 Secondary and Multiple Additions 68
2.5.2 Electro- and Redox Chemistry of Fullerenes 72
2.5.2.1 Electrochemistry of Fullerenes 72
2.5.2.2 Reductions of Fullerenes 74
2.5.2.3 Oxidations of Fullerenes 76
2.5.3 Inorganic Chemistry of Fullerenes 77
2.5.4 Endohedral Complexes of Fullerenes 82
2.5.4.1 Metallofullerenes 82
2.5.4.2 Endohedral Compounds with Nonmetallic Elements 86
2.5.5 Organic Chemistry of Fullerenes 87
2.5.5.1 Hydrogenation and Halogenation 87
2.5.5.2 Nucleophilic Addition to Fullerenes 93
2.5.5.3 Cycloadditions 98
2.5.5.4 Photochemistry 103
2.5.5.5 Radical Chemistry of Fullerenes 105
2.5.5.6 Fullerenes in Polymeric Materials and on Surfaces 107
2.5.6 Supramolecular Chemistry of Fullerenes 112
2.5.7 Polymeric Fullerenes and Behavior under High Pressure 116
2.5.8 Reactivity of Further Fullerenes 117
2.6 Applications and Perspectives 118
2.7 Summary 121

3 Carbon Nanotubes 123
3.1 Introduction 123
3.4.6 Thermal Properties of Carbon Nanotubes 216
3.4.6.1 Specific Heat Capacity of Carbon Nanotubes 216
3.4.6.2 Heat Conductivity of Carbon Nanotubes 216
3.5 Chemical Properties 217
3.5.1 General Considerations on the Reactivity of Carbon Nanotubes 217
3.5.2 Redox Chemistry of Carbon Nanotubes 220
3.5.3 Functionalization of the Caps or Open Ends of Carbon Nanotubes 224
3.5.4 Side Wall Functionalization of Carbon Nanotubes 226
3.5.4.1 Covalent Attachment of the Functional Groups 226
3.5.4.2 Noncovalent Attachment of Functional Units 240
3.5.5 Composite Materials with Carbon Nanotubes 246
3.5.5.1 Composites with Covalent Bonding of the Polymer 248
3.5.5.2 Composites with Noncovalent Attachment of the Polymer 249
3.5.5.3 Nanotube Composites with Different Polymers 250
3.5.5.4 Nanotube Composites with Other Materials 254
3.5.6 Intercalation Compounds and Endohedral Functionalization of Carbon Nanotubes 255
3.5.7 Supramolecular Chemistry of Carbon Nanotubes 263
3.6 Applications and Perspectives 266
3.6.1 Electronic Applications of Carbon Nanotubes 267
3.6.1.1 Nanotubes as Tips in Atomic Force Microscopy 267
3.6.1.2 Field Emission 268
3.6.1.3 Field Effect Transistors 269
3.6.2 Sensor Applications of Carbon Nanotubes 271
3.6.2.1 Physical Sensors 271
3.6.2.2 Chemical Sensors 271
3.6.3 Biological Applications of Carbon Nanotubes 273
3.6.3.1 Recognition of DNA Sequences 273
3.6.3.2 Delivery of Drugs and Vaccines; Gene Therapy 274
3.6.4 Materials with Carbon Nanotubes 275
3.6.5 Further Applications of Carbon Nanotubes 277
3.6.5.1 Heterogeneous Catalysis 277
3.6.5.2 Hydrogen Storage in Carbon Nanotubes 278
3.6.5.3 Carbon Nanotubes as Material in Electrical Engineering 279
3.7 Summary 280

4 Carbon Onions and Related Materials 283
4.1 Introduction 283
4.2 Structure and Occurrence 284
4.2.1 Structure of Carbon Onions 284
4.2.2 Structure of Facetted Carbon Nanoparticles 289
4.2.3 Occurrence of Carbon Onions and Nanoparticles 290
5.3 Preparation of Nanodiamond 340
5.3.1 Detonation Synthesis 340
5.3.2 Shock Syntheses of Nanodiamond 344
5.3.3 Further Methods of Nanodiamond Preparation 346
5.3.4 Deagglomeration and Purification 349
5.4 Physical Properties 351
5.4.1 Spectroscopic Properties of Nanodiamond 351
5.4.1.1 Raman Spectroscopy 351
5.4.1.2 Infrared Spectroscopy 354
5.4.1.3 X-Ray Diffraction and EELS 356
5.4.1.4 Absorption and Photoluminescence Spectroscopy 358
5.4.1.5 Further Spectroscopic Properties 360
5.4.2 Electronic Properties of Nanodiamond 362
5.4.3 Mechanical Properties of Nanodiamond 365
5.5 Chemical Properties 367
5.5.1 Reactivity of Nanodiamond 367
5.5.2 Surface Functionalization of Nanodiamond 370
5.5.2.1 Hydrogenation 370
5.5.2.2 Halogenation 371
5.5.2.3 Oxidation of Nanodiamond 373
5.5.2.4 Reduction of Nanodiamond 374
5.5.2.5 Silanization of Nanodiamond 374
5.5.2.6 Alkylation and Arylation of Nanodiamond 375
5.5.2.7 Reactions on sp²-Hybridized Domains on the Nanodiamond Surface 376
5.5.2.8 Further Functionalization of Nanodiamond 377
5.5.2.9 Composites and Noncovalent Interactions with Nanodiamond 380
5.5.3 Transformations of Nanodiamond into Other Forms of Carbon 382
5.6 Applications and Perspectives 382
5.6.1 Mechanical Applications 382
5.6.2 Thermal Applications 384
5.6.3 Applications as Sorbent 384
5.6.4 Biological Applications 385
5.6.5 Further Applications and Perspectives 385
5.7 Summary 386

6 Diamond Films 389
6.1 Discovery and History of Diamond Films 389
6.2 Structure of Diamond Films 391
6.2.1 General Considerations on the Structure of Diamond Films 391
6.2.2 The Surface Structure of Diamond Films 394
6.2.2.1 Structure of the (111)-Plane 394
6.2.2.2 Structure of the (100)-Plane 396
6.2.2.3 Structure of the (110)-Plane 398
Contents

Carbon Onions 457
Diamond Films 457
Nanodiamond 458
8.2 Figure References 458

Index 467

Paper Cutout DIY Kit 475