Contents

Preface xxv

Chapter 1 The Fundamentals of Computer Science 1

Introduction 1

1.1 Solving Problems with the Computer 2
An Overview of Problem Solving 3
Analyzing the Problem 4
Designing a Solution 5
Implementing the Design 8
Testing the Code 8
Maintaining the Product 9
Summary 9

1.2 Breadth: The Computer Science Discipline 10
Theory Paradigm 11
Abstraction Paradigm 11
Design Paradigm 12

1.3 Model of a Computer System 12
Input and Output Devices 13
Secondary Storage 13
Central Processing Unit 14
Main Memory 15

1.4 Breadth: Invention of the First Computers 17

1.5 Steps to Execution 19
Editor 19
1.6 Breadth: The History of C and C++ 24

1.7 Implementation of the Design 25

1.8 Top-Down Design and Functions 35

1.9 Breadth: Subject Areas of Computer Science 46

Programming and Debugging Hints 53
Key Terms 55
Summary 56
Review Questions 58
Laboratory 59

Chapter 2 Integer Variables and Expressions 63

Introduction 63

2.1 Integer Data 64
Variables 64
Variable Declaration 65
Naming of Variables 66

2.2 The Assignment Statement 69
lvalues and rvalues 71
Declaration-Initialization 72
Constants 73
Not an Algebraic Formula 74
Labeled Output 75
endl 76

2.3 Integer Arithmetic 78
Four Binary Operators 78
Modulus Operator 81
Unary Minus 85
Operator Precedence 85

2.4 Breadth: Computer Storage of Integers 90
Binary Representation of Integers 90
Counting 91
Decrementing by 1 93
Range of Unsigned Integers in a Computer 94
Conversion of a Decimal Integer to Binary 95
2.5 Breadth: Integer Arithmetic 99
 Signed-Magnitude Representation 99
 Two's Complement Representation 100
 Addition 103
 Subtraction 105
 Multiplication and Division by Two 105

2.6 Interactive Programs 108
 Interactive versus Batch Programs 108
 Interactive Programs in C++ 109

Programming and Debugging Hints 112
 Clarity of Code 112
 Clarity of User Interface 112

Key Terms 113

Summary 113

Review Questions 115

Laboratory 116

Chapter 3 Integer Functions and Encapsulation 121

Introduction 121

3.1 Problem Solving with Integer Functions 122
 Preconditions and Postconditions 122
 Analysis and Design of a Function 124
 Implementation of an Integer Function 125
 Procedures 127
 Arguments and Parameters 130

3.2 Problem Solving Revisited 137
 Analysis 138

3.3 Scope and Lifetime 140
 Local Variables and Scope 140
 Pass by Value 141
Local Variables with the Same Name 143
Global Variables 145
Namespace Revisited 149

3.4 Encapsulation with Objects 151
Abstraction 151
Object-Oriented Programming 153
Information Hiding and Classes 154
Class Diagram 156
Objects 156

Programming and Debugging Hints 159
Clarity of Comments 159
Local over Global 160

Key Terms 161
Summary 162
Review Questions 164
Laboratory 164

Chapter 4 Decision Making and Classes 171

Introduction 171

4.1 Relational and Logical Operators 172
Relational Operators 173
Logical Operators 173
Boolean Constants, Expressions, and Variables 177
Operator Precedence 178

4.2 Selection 181
Flow of Control 181
The if Statement 182
The if-else Statement 185
Conditional Expression Operator 192

4.3 Nesting 195
4.4 Multiple-Way Selection 207
 The switch Statement 207
 Branching to the Same Point 216

4.5 Defining Methods 220
 Access to Data Structure 220
 Header File 221
 File of Method Definitions 222

4.6 Breadth: Logic 226
 George Boole and Edmund Berkeley 226
 Basic Components of Logic 226
 Truth Tables 227
 Algebra of Propositions 228
 DeMorgan’s Laws 230

4.7 Testing Schemes 232
 Top-Down Testing 232
 Bottom-Up Testing 237
 Combined Top-Down and Bottom-Up Testing 238
 Class Testing 239

Programming and Debugging Hints 242
 Decision Control Structures 242
 Testing 243

Key Terms 244

Summary 245

Review Questions 248

Laboratory 249

Chapter 5 More Numeric Types and Polymorphism 259

Introduction 259

5.1 Floating Point Numbers 261
 Distinctions between Integers and Floating Point Numbers 261
 Floating Point Arithmetic 262
Exponential Notation 263
Type double 264
Formatted Output 264

5.2 Polymorphism 269

5.3 Constructors 274
Definition and Use 274
Polymorphic Constructors 275

5.4 Breadth: Floating Point Number Storage 278
Conversion from Base 2 to Base 10 278
Conversion from Base 10 to Base 2 278
Multiplication and Division by 2 280
Storage of Floating Point Numbers 280
Truncation Error 283

5.5 Coercion 286
Implicit Coercion 286
Explicit Coercion 287
Strong and Weak Typing 289

5.6 Additional Integer Types 291
Different Sizes of Integers 291
Unsigned Integers 292
Mixed-Mode Arithmetic 292
Abstract Data Type Money 292
Implementation of ADT Money 293

5.7 C++ Header Files 304
Numerical Constants 304
Absolute Value Function 306
Square Root Function 307
Additional cmath Library Functions 308

Programming and Debugging Hints 320
Interfaces between Functions: Global Variables 320
Constants 321
Reader's Understanding of the Interface 321
Default Constructors 322
Key Terms 323
Summary 323
Review Questions 325
Laboratory 326

Chapter 6 Looping 333

Introduction 333

6.1 Updating Assignment Operators 334
 Increment and Decrement Operators 336
 Pre- and Post-Increment and Decrement 337

6.2 Looping with a Pretest 338
 The while Loop 338
 Infinite Loop 341
 Nature of the Pretest 343
 Manipulation of Loop Variable 344

6.3 Looping with a Posttest 352
 The do-while Loop 352
 Applications 353

6.4 Looping and Interactive Programs 363
 The Sentinel Technique 363
 Random Numbers in Interactive Programs 366
 Seeding the Random Number Generator 367
 Ranges of Random Numbers 369

6.5 Structured and Object-Oriented Programs 379
 Structured Programming 379
 Object-Oriented Programming 381

6.6 Breadth: Computer Time 382
 Clock Cycle 383
 Clock Frequency 384
 Flops 384
Chapter 8 Characters 445

Introduction 445

8.1 Character Input and Output 446
Buffers 448
Y/N Responses 454

8.2 The ASCII Encoding Scheme 459
Numeric Code 459
Integer Equivalent of Character Digit 464
Escape Sequences 464

8.3 Character Functions 468
Changing Case 468
Boolean Character Functions 472

8.4 Breadth: Octal and Hexadecimal Systems 480
Conversion to Decimal Numbers 480
Conversion between Binary and Hexadecimal Number Systems 481
Constants 482
Applications 482
Conversion of Decimal Numbers to Hexadecimal 483

Programming and Debugging Hints 486
Defensive Programming: Detection and Recovery 486
Defensive Programming: Read Data as Strings 486
Defensive Programming: “Bullet-Proof” All Levels 487

Key Terms 488
Summary 488
Review Questions 490
Laboratory 491
Chapter 9 Inheritance and Files 501

Introduction 501

9.1 Inheritance 502

9.2 File I/O Classes 505
 File I/O 506
 Reading Characters 509
 Formatted I/O 510
 Closing and Opening Files 510

9.3 Pass by Reference 512
 Pass by Value 512
 Simple Variables as Parameters 512
 Streams as Parameters 517

9.4 Breadth: Secondary Storage 520
 Tape Storage 520
 Disk Storage 523
 CD-ROM 525

9.5 Breadth: Machine and Assembler Languages 527
 Machine Architecture 527
 Machine Instructions 527
 Fetch/Execute Cycle 530
 Branching 532
 CPU Simulator Program cpusim 537

Programming and Debugging Hints 541
 Debugging with Conditional Compilation 541
 Levels of Debugging 542
 Debugging with assert 543

Key Terms 544

Summary 544

Review Questions 545
Chapter 10 Arrays and the vector Class 555

Introduction 555

10.1 What Is an Array? 556
Declaration 557
Assigning Values 558
Array Index 559
Declaration-Initialization 566

10.2 Functions with Array Parameters 568
Passing an Array 568
Minimum and Maximum 571
Frequency 574

10.3 Arrays and Classes 582
An Array of Objects 582
Arrays as Member Data 583

10.4 Sequential and Binary Searches 591
Sequential Search 591
Binary Search 594

10.5 Selection Sort 602
Selection Sort Algorithm 602
Index of Minimum Element 604
Swapping Values 604

10.6 Templates 607
Templated Functions 607
Templated Class Interface 609
10.7 Arrays and the vector Class 614
 Array Limitations 614
 Range Checking 614
 Dynamic Allocation 615
 C++ vector class 616
 Vector Size and Resize 617
 Indexing 617
 A Test Program 618

10.8 Multidimensional Arrays and Vectors 621
 Indices 621
 Declaration 623
 Multidimensional Vectors 633

10.9 Breadth: Color in Computer Graphics 640
 Display Devices 641
 Color Lookup Table 642

Programming and Debugging Hints 644
Selecting Test Data: Edge Data 644
Data to Test Branches 644
Testing by Novices or with Random Data 645

Key Terms 645
Summary 646
Review Questions 648
Laboratory 650

Chapter II Strings and the string Class 657

Introduction 657

11.1 Character Strings 658
 Literals 658
 Displaying Strings 660
Reading Strings with the Extraction Operator 661
Reading a Character or a Line 663
Two-Dimensional Array of Characters 667

11.2 Validation of Data 670

11.3 Several C String Functions 677
Storage Size 678
String Length 679
Copying Strings 679
Concatenation 680

11.4 String Comparisons 684
Comparison Function 684
Summary of String Operations 698

11.5 The string Class 701
Disadvantages of C Strings 701
Constructors 702
Overloaded Operators 702
Length 703
Substrings 703
Nonmember Functions 707
C Strings versus C++ Strings 708

11.6 Breadth: Software Life Cycle 711
Analysis 713
Design 716
Implementation and Testing 717
Maintenance 719

Programming and Debugging Hints 720
Verification 720
String Comparison 720
Semicolon and Closing Brace 720
Commenting Out 721

Key Terms 722
Summary 722
Chapter 12 Structures and Enumeration Types 737

12.1 The Concept of a Structure 738
 Declaration 738
 Reference to Members 740
 Element by Element 741
 Structure Members 741
 Arrays of Structures 742

12.2 Breadth: Databases 755
 Traditional File Processing 756
 Database Management System 757
 Relational Database 758

12.3 Enumeration Types 762
 Implementation 763
 Coercion 763

12.4 Breadth: Computer Vision 771
 The Digital Image 772
 The Low-Level Module 774
 An Example of Low-Level Processing 777
 The High-Level Module 787

Programming and Debugging Hints 791
Structures with Array Elements 791

Key Terms 792
Summary 792
Review Questions 793
Laboratory 794
Chapter 13 Recursion 801

Introduction 801

13.1 Recursive Functions 802
 Power Function 811

13.2 Recursion versus Iteration 827
 Solving a Recursive Routine 827

13.3 Breadth: Formal Grammars 831
 BNF 831
 Parsing 832

Programming and Debugging Hints 840
 Run-Time Errors and Buffering 840
 Program Correctness 840

Key Terms 841
Summary 841
Review Questions 842
Laboratory 842

Chapter 14 Pointers 853

Introduction 853

14.1 The Concept of Pointers 854
 Declarations 854
 Address Operator 855
 Indirection Operator 856
 NULL 857
 Printing Addresses 858
 Point before Dereferencing 862

14.2 Breadth: Memory 864
 Memory Sizes 865
 RAM and ROM 867
14.3 Arrays and Pointers 869
 Array Name as a Constant Pointer 869
 Parameters 871
 Pointer Arithmetic 872

14.4 Dynamic Memory Allocation 875
 Allocate Memory 875
 Deallocate Memory 876

14.5 Pointer Data Members 881
 Destructors 881
 Creating and Destroying 882
 Copy Constructor 886
 Overloading Assignment 889

14.6 User-Defined Types 894
 Type Definitions in Header Files 894

14.7 Pointers and Structures 896
 Dereferencing 896
 Linked Lists 898

14.8 Function Pointers 900
 Declarations and Assignments 901
 Calling Functions Indirectly 902
 Function Pointers as Parameters 902

Programming and Debugging Hints 908
 Pointer Post-Increment 908
 Allocation of Space 911

Key Terms 911

Summary 911

Review Questions 914

Laboratory 915

Chapter 15 Data Structures 921

Introduction 921
15.1 List Abstraction 922
Definition of ADT List 922
Picturing the Current Position 923
Picturing Insertions 926
Picturing Deletions 926
Picturing Storing and Retrieving 928
Destroy a List 929
Create a List 929
List Traversal 932

15.2 Dynamic Implementation of Lists 934
List Creation 934
Initialize List 936
Test for Empty or Full 936
Current Position at the Head or Tail 937
Advance the Current Position 938
Create a Node 939
Insert a Node 940
Delete a Node 945
Store and Retrieve Information 949
Display a List 958

15.3 Stack Abstraction 961
Definition of ADT Stack 962
Additional Operations 963

15.4 Dynamic Implementation of Stacks 971
Framework for Stack 971
Initialization and Testing of a Stack 972
Push 973
Pop 973
Destroy a Stack 974
Using the Stack Data Structure 979

15.5 Breadth: Run-Time Stack 982
Programming and Debugging Hints 986
Freeing Pointers 986
Internal Limitations 986