Contents

PREFACE xiii

1 Fundamental Concepts of Thermodynamics 1
1.1 What Is Thermodynamics and Why Is It Useful? 1
1.2 Basic Definitions Needed to Describe Thermodynamic Systems 2
1.3 Thermometry 4
1.4 Equations of State and the Ideal Gas Law 6
1.5 A Brief Introduction to Real Gases 9

2.1 The Internal Energy and the First Law of Thermodynamics 15
2.2 Work 16
2.3 Heat 19
2.4 Heat Capacity 21
2.5 State Functions and Path Functions 23
2.6 Equilibrium, Change, and Reversibility 25
2.7 Comparing Work for Reversible and Irreversible Processes 26
2.8 Determining ΔU and Introducing Enthalpy, a New State Function 30
2.9 Calculating g, w, ΔU, and ΔH for Processes Involving Ideal Gases 31
2.10 The Reversible Adiabatic Expansion and Compression of an Ideal Gas 35

3 The Importance of State Functions: Internal Energy and Enthalpy 41
3.1 The Mathematical Properties of State Functions 41
3.2 The Dependence of U on V and T 46
3.3 Does the Internal Energy Depend More Strongly on V or T? 48
3.4 The Variation of Enthalpy with Temperature at Constant Pressure 51
3.5 How Are Cp and Cv Related? 53
3.6 The Variation of Enthalpy with Pressure at Constant Temperature 54

3.7 The Joule–Thomson Experiment 57
3.8 Liquefying Gases Using an Isenthalpic Expansion 59

4 Thermochemistry 63
4.1 Energy Stored in Chemical Bonds Is Released or Taken Up in Chemical Reactions 63
4.2 Internal Energy and Enthalpy Changes Associated with Chemical Reactions 64
4.3 Hess's Law Is Based on Enthalpy Being a State Function 67
4.4 The Temperature Dependence of Reaction Enthalpies 69
4.5 The Experimental Determination of ΔU and ΔH for Chemical Reactions 71
4.6 (Supplemental) Differential Scanning Calorimetry 73

5 Entropy and the Second and Third Laws of Thermodynamics 79
5.1 The Universe Has a Natural Direction of Change 79
5.2 Heat Engines and the Second Law of Thermodynamics 80
5.3 Introducing Entropy 85
5.4 Calculating Changes in Entropy 86
5.5 Using Entropy to Calculate the Natural Direction of a Process in an Isolated System 89
5.6 The Clausius Inequality 91
5.7 The Change of Entropy in the Surroundings and ΔS_total = ΔS + ΔS_surroundings 92
5.8 Absolute Entropies and the Third Law of Thermodynamics 94
5.9 Standard States in Entropy Calculations 98
5.10 Entropy Changes in Chemical Reactions 98
5.11 (Supplemental) Energy Efficiency: Heat Pumps, Refrigerators, and Real Engines 100
5.12 (Supplemental) Using the Fact that S Is a State Function to Determine the Dependence of S on V and T 107
5.13 (Supplemental) The Dependence of S on T and P 108
5.14 (Supplemental) The Thermodynamic Temperature Scale 109
Contents

6 Chemical Equilibrium 115
 6.1 The Gibbs Energy and the Helmholtz Energy 116
 6.2 The Differential Forms of U, H, A, and G 120
 6.3 The Dependence of the Gibbs and Helmholtz Energies on P, V, and T 121
 6.4 The Gibbs Energy of a Reaction Mixture 124
 6.5 The Gibbs Energy of a Gas in a Mixture 125
 6.6 Calculating the Gibbs Energy of Mixing for Ideal Gases 126
 6.7 Calculating \(\Delta G^\circ \) for a Chemical Reaction 127
 6.8 Introducing the Equilibrium Constant for a Mixture of Ideal Gases 129
 6.9 Calculating the Equilibrium Partial Pressures in a Mixture of Ideal Gases 131
 6.10 The Variation of \(K_p \) with Temperature 132
 6.11 Equilibria Involving Ideal Gases and Solid or Liquid Phases 134
 6.12 Expressing the Equilibrium Constant in Terms of Mole Fraction or Molality 135
 6.13 The Dependence of \(\xi_{\text{eq}} \) on \(T \) and \(P \) 136
 6.14 (Supplemental) A Case Study: The Synthesis of Ammonia 137
 6.15 (Supplemental) Expressing \(U \) and \(H \) and Heat Capacities Solely in Terms of Measurable Quantities 142
 6.16 (Supplemental) Measuring \(\Delta G \) for the Unfolding of Single RNA Molecules 146
 6.17 (Supplemental) The Role of Mixing in Determining Equilibrium in a Chemical Reaction 147

7 The Properties of Real Gases 155
 7.1 Real Gases and Ideal Gases 155
 7.2 Equations of State for Real Gases and Their Range of Applicability 156
 7.3 The Compression Factor 160
 7.4 The Law of Corresponding States 163
 7.5 Fugacity and the Equilibrium Constant for Real Gases 166

8 Phase Diagrams and the Relative Stability of Solids, Liquids, and Gases 173
 8.2 The Pressure–Temperature Phase Diagram 176
 8.3 The Phase Rule 181

8.4 The Pressure–Volume and Pressure–Volume–Temperature Phase Diagrams 182
 8.5 Providing a Theoretical Basis for the \(P–T \) Phase Diagram 184
 8.6 Using the Clausius–Clapeyron Equation to Calculate Vapor Pressure as a Function of \(T \) 185
 8.7 The Vapor Pressure of a Pure Substance Depends on the Applied Pressure 188
 8.8 Surface Tension 189
 8.9 (Supplemental) Chemistry in Supercritical Fluids 192
 8.10 (Supplemental) Liquid Crystal Displays 193

9 Ideal and Real Solutions 199
 9.1 Defining the Ideal Solution 200
 9.2 The Chemical Potential of a Component in the Gas and Solution Phases 201
 9.3 Applying the Ideal Solution Model to Binary Solutions 202
 9.4 The Temperature–Composition Diagram and Fractional Distillation 206
 9.5 The Gibbs–Duhem Equation 208
 9.6 Colligative Properties 210
 9.7 The Freezing Point Depression and Boiling Point Elevation 210
 9.8 The Osmotic Pressure 213
 9.9 Real Solutions Exhibit Deviations from Raoult’s Law 214
 9.10 The Ideal Dilute Solution 217
 9.11 Activities Are Defined with Respect to Standard States 219
 9.12 Henry’s Law and the Solubility of Gases in a Solvent 222
 9.13 Chemical Equilibrium in Solutions 223
 9.14 Solutions Formed from Partially Miscible Liquids 227
 9.15 The Solid–Solution Equilibrium 228

10 Electrolyte Solutions 233
 10.1 The Enthalpy, Entropy, and Gibbs Energy of Ion Formation in Solutions 234
 10.2 Understanding the Thermodynamics of Ion Formation and Solution 236
 10.3 Activities and Activity Coefficients for Electrolyte Solutions 238
 10.4 Calculating \(\gamma_2 \) Using the Debye–Hückel Theory 241
 10.5 Chemical Equilibrium in Electrolyte Solutions 245
11 Electrochemical Cells, Batteries, and Fuel Cells 249
11.1 The Effect of an Electrical Potential on the Chemical Potential of Charged Species 250
11.2 Conventions and Standard States in Electrochemistry 251
11.3 Measurement of the Reversible Cell Potential 254
11.4 Chemical Reactions in Electrochemical Cells and the Nernst Equation 254
11.5 Combining Standard Electrode Potentials to Determine the Cell Potential 256
11.6 Obtaining Reaction Gibbs Energies and Reaction Entropies from Cell Potentials 257
11.7 The Relationship between the Cell EMF and the Equilibrium Constant 258
11.8 Determination of E° and Activity Coefficients Using an Electrochemical Cell 260
11.9 Cell Nomenclature and Types of Electrochemical Cells 260
11.10 The Electrochemical Series 262
11.11 Thermodynamics of Batteries and Fuel Cells 263
11.12 The Electrochemistry of Commonly Used Batteries 263
11.13 Fuel Cells 265
11.14 (Supplemental) Electrochemistry at the Atomic Scale 267
11.15 (Supplemental) Using Electrochemistry for Nanoscale Machining 273
11.16 (Supplemental) Absolute Half-Cell Potentials 274

12 Probability 281
12.1 Why Probability? 281
12.2 Basic Probability Theory 282
12.3 Stirling's Approximation 290
12.4 Probability Distribution Functions 291
12.5 Probability Distributions Involving Discrete and Continuous Variables 293
12.6 Characterizing Distribution Functions 296

13 The Boltzmann Distribution 305
13.1 Microstates and Configurations 305
13.2 Derivation of the Boltzmann Distribution 311
13.3 Dominance of the Boltzmann Distribution 316
13.4 Physical Meaning of the Boltzmann Distribution Law 318
13.5 The Definition of β 319

14 Ensemble and Molecular Partition Functions 327
14.1 The Canonical Ensemble 327
14.2 Relating Q to q for an Ideal Gas 329
14.3 Molecular Energy Levels 331
14.4 Translational Partition Function 331
14.5 Rotational Partition Function: Diatomics 334
14.6 Rotational Partition Function: Polyatomics 342
14.7 Vibrational Partition Function 343
14.8 The Equipartition Theorem 349
14.9 Electronic Partition Function 350
14.10 Review 353

15 Statistical Thermodynamics 359
15.1 Energy 359
15.2 Energy and Molecular Energetic Degrees of Freedom 363
15.3 Heat Capacity 368
15.4 Entropy 372
15.5 Residual Entropy 377
15.6 Other Entropy Functions 378
15.7 Chemical Equilibrium 382

16 Kinetic Theory of Gases 391
16.1 Kinetic Theory of Gas Motion and Pressure 391
16.2 Velocity Distribution in One Dimension 394
16.3 The Maxwell Distribution of Molecular Speeds 398
16.4 Comparative Values for Speed Distributions: v_{av}, v_{rms}, and v_{max} 400
16.5 Gas Diffusion 402
16.6 Molecular Collisions 404
16.7 The Mean Free Path 408

17 Transport Phenomena 413
17.1 What Is Transport? 413
17.2 Mass Transport: Diffusion 415
17.3 The Time Evolution of a Concentration Gradient 418
17.4 (Supplemental) Statistical View of Diffusion 420
17.5 Thermal Conduction 422
17.6 Viscosity of Gases 426
17.7 Measuring Viscosity 428
17.8 Diffusion in Liquids and Viscosity of Liquids 430
18 Elementary Chemical Kinetics 445
18.1 Introduction to Kinetics 446
18.2 Reaction Rates 447
18.3 Rate Laws 448
18.4 Reaction Mechanisms 454
18.5 Integrated Rate Law Expressions 455
18.6 (Supplemental) Numerical Approaches 459
18.7 Sequential First-Order Reactions 461
18.8 Parallel Reactions 466
18.9 Temperature Dependence of Rate Constants 468
18.10 Reversible Reactions and Equilibrium 470
18.11 (Supplemental) Perturbation-Relaxation Methods 473
18.12 (Supplemental) The Autoionization of Water: A T-Jump Example 475
18.13 Potential Energy Surfaces 476
18.14 Diffusion Controlled Reactions 478
18.15 Activated Complex Theory 480

19 Complex Reaction Mechanisms 491
19.1 Reaction Mechanisms and Rate Laws 491
19.2 The Preequilibrium Approximation 493
19.3 The Lindemann Mechanism 495
19.4 Catalysis 497
19.5 Radical-Chain Reactions 508
19.6 Radical-Chain Polymerization 511
19.7 Explosions 512
19.8 Photochemistry 514
19.9 Electron Transfer 525

Appendix A Data Tables 539
Appendix B Math Supplement 557
Appendix C Answers to Selected End-of-Chapter Problems 579
Index 591