UNIT 1 LEVELS OF ORGANIZATION

Chapter 1
An Introduction to Anatomy and Physiology

An Introduction to Studying the Human Body 2
1-1 Anatomy and physiology directly affect your life 2
1-2 Anatomy is structure, and physiology is function 2
1-3 Anatomy and physiology are closely integrated 3
 Anatomy • Physiology
1-4 Levels of organization progress from molecules to a complete organism 5
1-5 Homeostasis is the tendency toward internal balance 7
1-6 Negative feedback opposes variations from normal, whereas positive feedback exaggerates them 11
 The Role of Negative Feedback in Homeostasis • The Role of Positive Feedback in Homeostasis • Systems Integration, Equilibrium, and Homeostasis
1-7 Anatomical terms describe body regions, anatomical positions and directions, and body sections 13
 Superficial Anatomy • Sectional Anatomy
1-8 Body cavities protect internal organs and allow them to change shape 16
 The Thoracic Cavity • The Abdominopelvic Cavity
Review Questions 21

Chapter 2
The Chemical Level of Organization

An Introduction to the Chemical Level of Organization 24
2-1 Atoms are the basic particles of matter 24
 Atomic Structure • Elements and Isotopes • Atomic Weights • Electrons and Energy Levels
2-2 Chemical bonds are forces formed by atom interactions 27
 Ionic Bonds • Covalent Bonds • Hydrogen Bonds • States of Matter • Molecular Weights
2-3 Decomposition, synthesis, and exchange reactions are important chemical reactions in physiology 31
 Basic Energy Concepts • Types of Chemical Reactions
2-4 Enzymes catalyze specific biochemical reactions by lowering a reaction’s activation energy 33
2-5 Inorganic compounds usually lack carbon, and organic compounds always contain carbon 34
2-6 Physiological systems depend on water 34
 The Properties of Aqueous Solutions • Colloids and Suspensions
2-7 Body fluid pH is vital for homeostasis 36
2-8 Acids, bases, and salts are inorganic compounds with important physiological roles 37
 Salts • Buffers and pH Control
2-9 Carbohydrates contain carbon, hydrogen, and oxygen in a 1:2:1 ratio 38
 Monosaccharides • Disaccharides and Polysaccharides
2-10 Lipids contain a carbon-to-hydrogen ratio of 1:2 41
 Fatty Acids • Eicosanoids • Glycerides • Steroids • Phospholipids and Glycolipids
2-11 Proteins are formed from amino acids and contain carbon, hydrogen, oxygen, and nitrogen 44
 Protein Structure • Protein Shape • Enzyme Function • Glycoproteins and Proteoglycans
2-12 DNA and RNA are nucleic acids 49
 Structure of Nucleic Acids • DNA and RNA
2-13 ATP is a high-energy compound used by cells 51
2-14 Chemicals form functional units called cells 52
Review Questions 53

Chapter 3
The Cellular Level of Organization

An Introduction to Cells 56
3-1 The plasma membrane separates the cell from its surrounding environment and performs various functions 56
 Membrane Lipids • Membrane Proteins • Membrane Carbohydrates
3-2 Organelles within the cytoplasm perform particular functions 61
 The Cytosol • The Organelles
3-3 The nucleus contains DNA and enzymes essential for controlling cellular activities 70

Contents of the Nucleus • Information Storage in the Nucleus

3-4 DNA controls protein synthesis, cell structure, and cell function 72

The Role of Gene Activation in Protein Synthesis • The Transcription of mRNA • Translation • How the Nucleus Controls Cell Structure and Function

3-5 Diffusion is a passive transport mechanism facilitating membrane passage 76

Diffusion • Diffusion across Plasma Membranes

3-6 Carrier-mediated and vesicular transport mechanisms facilitate membrane passage 80

Carrier-Mediated Transport • Vesicular Transport

3-7 The transmembrane potential results from the unequal distribution of ions across the plasma membrane 85

3-8 Stages of a cell’s life cycle include interphase, mitosis, and cytokinesis 86

Interphase • Mitosis • Cytokinesis • The Mitotic Rate and Energy Use

3-9 Several internal and external factors affect the cell life cycle 90

3-10 Tumors and cancers are characterized by abnormal cell growth and division 90

Review Questions 91

UNIT 2 SUPPORT AND MOVEMENT

Chapter 5

The Integumentary System 126

An Introduction to the Integumentary System 127

5-1 The epidermis is composed of strata (layers) with various functions 128

Stratum Germinativum • Stratum Spinosum • Stratum Granulosum • Stratum Lucidum • Stratum Corneum

5-2 Factors influencing skin color are epidermal pigmentation and dermal circulation 131

The Role of Epidermal Pigmentation • The Role of Dermal Circulation

5-3 Sunlight causes epidermal cells to convert a steroid into vitamin D3 132

5-4 Epidermal growth factor has several effects on the epidermis and epithelia 133

5-5 The dermis is the tissue layer that supports the epidermis 133

Dermal Strength and Elasticity • Lines of Cleavage • The Dermal Blood Supply • Innervation of the Skin

5-6 The hypodermis is tissue beneath the dermis that connects it to underlying tissues 135

5-7 Hair is composed of keratinized dead cells that have been pushed to the surface 136

Hair Production • The Hair Growth Cycle • Types of Hairs • Hair Color

5-8 Sebaceous glands and sweat glands are exocrine glands found in the skin 138

Sebaceous (Oil) Glands • Sweat Glands • Other Integumentary Glands • Control of Glandular Secretions and the Homeostatic Role of the Integument

5-9 Nails are keratinized epidermal cells that protect the tips of fingers and toes 141

5-10 Several steps are involved in repairing the integument following an injury 142

Review Questions 144
Chapter 6
Osseous Tissue and Bone Structure

An Introduction to the Skeletal System 147
6-1 The skeletal system has five primary functions 147
6-2 Bones are classified according to shape and structure, and feature surface markings 147
 Bone Shapes • Bone Markings (Surface Features) • Bone Structure
6-3 Bone is composed of matrix and several types of cells: osteocytes, osteoblasts, osteoprogenitor cells, and osteoclasts 151
 The Matrix of Bone • The Cells of Bone
6-4 Compact bone contains parallel osteons, and spongy bone contains trabeculae 153
 The Structure of Compact Bone • The Structure of Spongy Bone • The Periosteum and Endosteum
6-5 Ossification and appositional growth are mechanisms of bone formation and enlargement 156
 Endochondral Ossification • Intramembranous Ossification • The Blood and Nerve Supplies to Bone
6-6 Bone growth and development depend on a balance between bone formation and bone resorption 161
6-7 Exercise, hormones, and nutrition affect bone development and the skeletal system 162
 The Effects of Exercise on Bone • Hormonal and Nutritional Effects on Bone
6-8 Calcium plays a critical role in bone physiology 163
 The Skeleton as a Calcium Reserve • Hormones and Calcium Balance
6-9 A fracture is a crack or break in a bone 165
6-10 Osteopenia has a widespread effect on aging skeletal tissue 166

Review Questions 167

Chapter 7
The Skeleton

An Introduction to the Axial Skeleton 170
7-1 The 80 bones of the longitudinal axis make up the axial skeleton 170
7-2 The skull is composed of 8 cranial bones and 14 facial bones 171
 Crania • Facial Bones
7-3 Foramina and fissures of the skull serve as passageways for nerves and vessels 183
7-4 An orbital complex contains each eye, and the nasal complex encloses the nasal cavities 183
 The Orbital Complexes • The Nasal Complex

7-5 Fontanelles are non-ossified areas between cranial bones that allow for brain growth 186
7-6 The vertebral column has four spinal curves 187
 Spinal Curvature • Vertebral Anatomy
7-7 The five vertebral regions are the cervical, thoracic, lumbar, sacral, and coccygeal 188
 Cervical Vertebrae • Thoracic Vertebrae • Lumbar Vertebrae • The Sacrum • The Coccyx
7-8 The thoracic cage protects organs in the chest and provides sites for muscle attachment 195
 The Ribs • The Sternum

An Introduction to the Appendicular Skeleton 197
7-9 The pectoral girdle attaches to the upper limbs and consists of the clavicles and scapulae 199
 The Clavicles • The Scapulae
7-10 The upper limbs are adapted for freedom of movement 201
 The Humerus • The Ulna • The Radius • The Carpals Bones • The Metacarpal Bones and Phalanges
7-11 The pelvic girdle attaches to the lower limbs and consists of two coxal bones 205
 The Pelvic Girdle • The Pelvis
7-12 The lower limbs are adapted for locomotion and support 209
 The Femur • The Patella • The Tibia • The Fibula • The Tarsal Bones • The Metatarsals and Phalanges
7-13 Sex differences and age account for individual skeletal variation 213

Review Questions 215
Clinical Note
Carpal Tunnel Syndrome 204

Chapter 8
Articulations

An Introduction to Articulations 219
8-1 Joints are categorized according to their range of motion or anatomical organization 219
 Synarthroses (Immovable Joints) • Amphiarthroses (Slightly Movable Joints) • Diarthroses (Freely Movable Joints)
8-2 Synovial joints are freely movable articulations (diarthroses) containing synovial fluid 221
 Articular Cartilages • Synovial Fluid • Accessory Structures • Factors That Stabilize Synovial Joints
8-3 Anatomical and functional properties of synovial joints enable various skeletal movements 223
 Describing Dynamic Motion • Types of Movements at Synovial Joints • Types of Synovial Joints
8-4 Intervertebral discs and ligaments are structural components of intervertebral articulations 229
 Intervertebral Discs • Intervertebral Ligaments • Vertebral Movements
Chapter 9

Muscle Tissue

An Introduction to Muscle Tissue 241
9-1 Skeletal muscle performs six major functions 241
9-2 A skeletal muscle contains connective tissues, blood vessels, and nerves 241
Organization of Connective Tissues • Blood Vessels and Nerves
9-3 Skeletal muscle fibers have distinctive features 243
The Sarcolemma and Transverse Tubules • Myofibrils
• The Sarcoplasmic Reticulum • Sarcomeres • Sliding Filaments and Muscle Contraction
9-4 Communication between the nervous system and skeletal muscles occurs at the neuromuscular junction 250
The Control of Skeletal Muscle Activity • Excitation-Contraction Coupling • Relaxation
9-5 Sarcomere shortening and muscle fiber stimulation produce tension 256
Tension Production by Muscle Fibers • Tension Production by Skeletal Muscles • Motor Units and Tension Production
9-6 ATP is the energy source for muscle contraction 263
ATP and CP Reserves • ATP Generation • Energy Use and the Level of Muscular Activity • Muscle Fatigue • The Recovery Period • Hormones and Muscle Metabolism
9-7 Muscle fiber type and physical conditioning determine muscle performance capabilities 267
Types of Skeletal Muscle Fibers • Muscle Performance and the Distribution of Muscle Fibers • Muscle Hypertrophy and Atrophy • Physical Conditioning
9-8 Cardiac muscle tissue differs structurally and functionally from skeletal muscle tissue 271
Structural Characteristics of Cardiac Muscle Tissue • Functional Characteristics of Cardiac Muscle Tissue
9-9 Smooth muscle tissue differs structurally and functionally from skeletal muscle tissue 272
Structural Characteristics of Smooth Muscle Tissue • Functional Characteristics of Smooth Muscle Tissue

Review Questions 275

Clinical Note

Tetanus 252

Chapter 10

The Muscular System 277

An Introduction to the Muscular System 278
10-1 Fascicle arrangement is correlated with muscle power and range of motion 278
Parallel Muscles • Convergent Muscles • Pennate Muscles • Circular Muscles
10-2 The three classes of levers increase muscle efficiency 279
10-3 Muscle origins are at the fixed end of muscles, whereas insertions are at the movable end of muscles 281
Origins and Insertions • Actions
10-4 Descriptive terms are used to name skeletal muscles 282
Location in the Body • Origin and Insertion • Fascicle Organization • Relative Position • Structural Characteristics • Action • Axial and Appendicular Muscles
10-5 Axial muscles are muscles of the head and neck, vertebral column, trunk, and pelvic floor 287
Muscles of the Head and Neck • Muscles of the Vertebral Column • Oblique and Rectus Muscles • Muscles of the Pelvic Floor
10-6 Appendicular muscles are muscles of the shoulders, upper limbs, pelvic girdle, and lower limbs 301
Muscles of the Shoulders and Upper Limbs • Muscles of the Pelvis and Lower Limbs

Review Questions 321

UNIT 3 CONTROL AND REGULATION

Chapter 11

Neural Tissue

An Introduction to Neural Tissue 324
11-1 The nervous system has anatomical and functional divisions 324
The Anatomical Divisions of the Nervous System • The Functional Divisions of the Nervous System
11-2 Neurons are nerve cells specialized for intercellular communication 325
The Structure of Neurons • The Classification of Neurons
11-3 CNS and PNS neuroglia support and protect neurons 329
Neuroglia of the Central Nervous System • Neuroglia of the Peripheral Nervous System • Neural Responses to Injuries
11-4 The transmembrane potential is the electrical potential of the cell's interior relative to its surroundings 334
The Transmembrane Potential • Changes in the Transmembrane Potential • Graded Potentials
11-5 An action potential is a nerve impulse 342
The All-or-None Principle • Generation of Action Potentials • Propagation of Action Potentials
11-6 Axon diameter, in addition to myelin, affects propagation speed 347
11-7 At synapses, communication occurs among neurons or between neurons and other cells 349
Synaptic Activity • General Properties of Synapses • Cholinergic Synapses
11-8 Neurotransmitters and neuromodulators have various functions 352
The Activities of Other Neurotransmitters • Neuromodulators • How Neurotransmitters and Neuromodulators Work
11-9 Information processing by individual neurons involves integrating excitatory and inhibitory stimuli 354
Postsynaptic Potentials • The Rate of Generation of Action Potentials •
Review Questions 357

Chapter 12

The Spinal Cord, Spinal Nerves, and Spinal Reflexes 359

An Introduction to the Spinal Cord, Spinal Nerves, and Spinal Reflexes 360
12-1 The brain and spinal cord make up the central nervous system, and the cranial nerves and spinal nerves constitute the peripheral nervous system 360
12-2 The spinal cord is surrounded by three meninges and conveys sensory and motor information 361
Gross Anatomy of the Spinal Cord • Spinal Meninges
12-3 Gray matter is the region of integration and command initiation, and white matter carries information from place to place 364
Organization of Gray Matter • Organization of White Matter
12-4 Spinal nerves form plexuses that are named according to their level of emergence from the vertebral canal 366
Anatomy of Spinal Nerves • Peripheral Distribution of Spinal Nerves • Nerve Plexuses
12-5 Neuronal pools are functional groups of interconnected neurons 375
12-6 Reflexes are rapid, automatic responses to stimuli 377
The Reflex Arc • Classification of Reflexes
12-7 Spinal reflexes vary in complexity 379
Monosynaptic Reflexes • Polysynaptic Reflexes

12-8 The brain can affect spinal cord-based reflexes 383
Voluntary Movements and Reflex Motor Patterns • Reinforcement and Inhibition
Review Questions 385

Chapter 13

The Brain and Cranial Nerves 387

An Introduction to the Brain and Cranial Nerves 388
13-1 The brain has several principal structures, each with specific functions 388
Major Brain Regions and Landmarks • Embryology of the Brain • Ventricles of the Brain
13-2 The brain is protected and supported by the cranial meninges, cerebrospinal fluid, and the blood-brain barrier 391
The Cranial Meninges • Cerebrospinal Fluid • The Blood Supply to the Brain
13-3 The medulla oblongata, which is continuous with the spinal cord, contains vital centers 395
13-4 The pons contains nuclei and tracts that carry or relay sensory and motor information 398
13-5 The cerebellum coordinates learned and reflexive patterns of muscular activity at the subconscious level 398
13-6 The mesencephalon regulates auditory and visual reflexes and controls alertness 400
13-7 The diencephalon integrates sensory information with motor output at the subconscious level 401
The Thalamus • The Hypothalamus
13-8 The limbic system is a group of tracts and nuclei with various functions 405
The Cerebral Cortex • The White Matter of the Cerebrum • The Basal Nuclei • Motor and Sensory Areas of the Cortex
13-9 The cerebrum, the largest region of the brain, contains motor, sensory, and association areas 406
The Cerebral Cortex • The White Matter of the Cerebrum • The Basal Nuclei • Motor and Sensory Areas of the Cortex
13-10 Twelve pairs of cranial nerves emerge from the ventral surface of the brain 415
The Olfactory Nerves (I) • The Optic Nerves (II) • The Oculomotor Nerves (III) • The Trochlear Nerves (IV) • The Abducens Nerves (VI) • The Trigeminal Nerves (V) • The Facial Nerves (VII) • The Vestibulocochlear Nerves (VIII) • The Glosopharyngeal Nerves (IX) • The Vagus Nerves (X) • The Accessory Nerves (XI) • The Hypoglossal Nerves (XII)
13-11 Cranial reflexes involve sensory and motor fibers of cranial nerves 423
Review Questions 424
Chapter 14

Neural Integration 426

An Introduction to Sensory Pathways and the Somatic Nervous System 427
14-1 Sensory information from all parts of the body is routed to the somatosensory cortex 427
14-2 Sensory receptors connect our internal and external environments with the nervous system 427
 The Detection of Stimuli • The Interpretation of Sensory Information • Adaptation
14-3 General sensory receptors can be classified by the type of stimulus that excites them 430
 Nociceptors • Thermoreceptors • Mechanoreceptors • Chemoreceptors
14-4 Separate pathways carry somatic sensory and visceral sensory information 434
 Somatic Sensory Pathways • Visceral Sensory Pathways
14-5 The somatic nervous system is an effector division that controls skeletal muscles 439
 The Corticospinal Pathway • The Medial and Lateral Pathways • The Basal Nuclei and Cerebellum • Levels of Processing and Motor Control

An Introduction to the Autonomic Nervous System and Higher-Order Functions 444
14-6 The autonomic nervous system, composed of the sympathetic and parasympathetic divisions, is involved in the unconscious regulation of visceral functions 444
 Organization of the ANS • Divisions of the ANS
14-7 The sympathetic division consists of preganglionic neurons and ganglionic neurons involved in using energy and increasing metabolic rate 446
 Organization and Anatomy of the Sympathetic Division • Sympathetic Activation
14-8 Stimulation of sympathetic neurons leads to the release of various neurotransmitters 451
 Sympathetic Stimulation and the Release of NE and E
 • Sympathetic Stimulation and the Release of ACh and NO
 • Summary: The Sympathetic Division
14-9 The parasympathetic division consists of preganglionic neurons and ganglionic neurons involved in conserving energy and lowering metabolic rate 453
 Organization and Anatomy of the Parasympathetic Division • Parasympathetic Activation
14-10 Stimulation of parasympathetic neurons leads to the release of the neurotransmitter ACh 456
 Neurotransmitter Release • Membrane Receptors and Responses
 • Summary: The Parasympathetic Division
14-11 The sympathetic and parasympathetic divisions interact, creating dual innervation 457
 Anatomy of Dual Innervation • Autonomic Tone

14-12 Visceral reflexes play a role in the integration and control of autonomic functions 461
 Visceral Reflexes • Higher Levels of Autonomic Control
 • The Integration of SNS and ANS Activities
14-13 Higher-order functions include memory and states of consciousness 463
 Memory • States of Consciousness
14-14 Neurotransmitters influence brain chemistry and behavior 468

Review Questions 469
Clinical Note
 Alzheimer Disease 468

Chapter 15

The Special Senses 472

An Introduction to the Special Senses 472
15-1 Olfaction, the sense of smell, involves olfactory receptors responding to chemical stimuli 473
 Olfactory Receptors • Olfactory Pathways • Olfactory Discrimination
15-2 Gustation, the sense of taste, involves taste receptors responding to chemical stimuli 475
 Taste Receptors • Gustatory Pathways • Gustatory Discrimination
15-3 Internal eye structures contribute to vision, while accessory eye structures provide protection 477
 Accessory Structures of the Eye • The Eye
15-4 Photoreceptors respond to light and change it into electrical signals essential to visual physiology 488
 Visual Physiology • The Visual Pathways
15-5 Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves 495
 Anatomy of the Ear • Equilibrium • Hearing

Review Questions 509
Clinical Notes
 Diabetic Retinopathy 482
 Accommodation Problems 487

Chapter 16

The Endocrine System 511

An Introduction to the Endocrine System 512
16-1 Homeostasis is preserved through intercellular communication 512
16-2 The endocrine system regulates physiological processes through the binding of hormones to receptors 514
Classes of Hormones • Secretion and Distribution of Hormones
• Mechanisms of Hormone Action • Control of Endocrine Activity by Endocrine Reflexes

16-3 The bilobed pituitary gland is an endocrine organ that releases nine peptide hormones 522
The Adenohypophysis • The Neurohypophysis • Summary: The Hormones of the Pituitary Gland

16-4 The thyroid gland lies inferior to the larynx and requires iodine for hormone synthesis 528
Thyroid Follicles and Thyroid Hormones • Functions of Thyroid Hormones • The C Cells of the Thyroid Gland and Calcitonin

16-5 The four parathyroid glands, embedded in the posterior surface of the thyroid gland, secrete parathyroid hormone to elevate plasma Ca²⁺ 532

16-6 The suprarenal glands, consisting of a cortex and medulla, cap the superior borders of the kidneys and secrete several hormones 535
The Suprarenal Cortex • The Suprarenal Medulla

16-7 The pineal gland, attached to the third ventricle, secretes melatonin 538
The Pineal Gland

16-8 The pancreas, located within the abdominopelvic cavity, is both an exocrine organ and endocrine gland 538
The Pancreatic Islets • Insulin • Glucagon

16-9 Many organs have secondary endocrine functions 542
The Intestines • The Kidneys • The Thymus • The Gonads • Adipose Tissue

16-10 Hormones interact to produce coordinated physiological responses 546
Role of Hormones in Growth • The Hormonal Responses to Stress • The Effects of Hormones on Behavior

Review Questions 550
Clinical Notes
Diabetes Mellitus 542
Endocrine Disorders 547

UNIT 4 FLUIDS AND TRANSPORT

17-4 The ABO blood types and Rh system are based on antigen-antibody responses 562
Cross-Reactions in Transfusions • Testing for Transfusion Compatibility

17-5 The various types of white blood cells contribute to the body’s defenses 566
WBC Circulation and Movement • Types of WBCs • The Differential Count and Changes in WBC Profiles • WBC Production

17-6 Platelets, disc-shaped structures formed from megakaryocytes, function in the clotting process 572
Platelet Functions • Platelet Production

17-7 Hemostasis involves vascular spasm, platelet plug formation, and blood coagulation 573
The Vascular Phase • The Platelet Phase • The Coagulation Phase • Fibrinolysis

Review Questions 577
Clinical Note
Hemolytic Disease of the Newborn 564

Chapter 18

The Heart 579

An Introduction to the Cardiovascular System 580
18-1 The heart is a four-chambered organ, supplied by the coronary circulation, that pumps oxygen-poor blood to the lungs and oxygen-rich blood to the rest of the body 580
The Pericardium • Superficial Anatomy of the Heart • The Heart Wall • Internal Anatomy and Organization • Connective Tissues and the Cardiac Skeleton • The Blood Supply to the Heart

18-2 The conducting system distributes electrical impulses through the heart, and an electrocardiogram records the associated electrical events 593
Cardiac Physiology • The Conducting System • The Electrocardiogram • Contractile Cells

18-3 Events during a complete heartbeat constitute a cardiac cycle 601
Phases of the Cardiac Cycle • Pressure and Volume Changes in the Cardiac Cycle • Heart Sounds

18-4 Cardodynamics examines the factors that affect cardiac output 605
Overview: Factors Affecting Cardiac Output • Factors Affecting the Heart Rate • Factors Affecting the Stroke Volume • Summary: The Control of Cardiac Output • The Heart and the Cardiovascular System

Review Questions 613
Clinical Notes
Coronary Artery Disease 591
Myocardial Infarction 600
Abnormal Conditions Affecting Cardiac Output 607