MỤC LỤC

Loại mỗ đầu... 1

Chapter 1. Khái niệm chung.. 3
1.1 Protein và chức năng nổi chung.. 3
1.1.1 Các amino acid.. 3
1.1.2 Cấu trúc của protein... 5
1.1.3 Các loại protein.. 8
1.1.4 Chức năng protein.. 9
1.2 Tính chống chịu ở thực vật.. 11
1.2.1 Cấu tạo đặc trưng của thực vật.............................. 11
1.2.2 Các yếu tố cấu trúc... 14
1.2.3 Phân ứng của cây trồng...................................... 16
1.2.4 Tính chống chịu ở thực vật.................................... 19
1.3 Protein liên quan đến tính chống chịu ở thực vật............... 21
1.3.1 Protein có chức năng chống chịu ở thực vật.................. 22
1.3.2 Protein điều khiển biểu hiện gen liên quan đến tính
 chống chịu ở thực vật... 22

Chapter 2. Protein thực vật... 25
2.1 Protein dự trữ... 26
2.1.1 Đặc điểm protein dự trữ trong hạt........................ 26
2.1.2 Albumin2S... 27
2.1.3 Globulin... 29
2.1.3.1 Globulin11S... 29
2.1.3.2 Globulin7S.. 32
2.1.4 Prolamin.. 34
2.1.4.1 Prolamin của họ phu Triticeae.......................... 34
2.1.4.2 Siêu Họ prolamin ở các loại khác..................... 36
2.1.5 Protein dự trữ của lúa nước................................ 39
2.2 Protease – enzyme phân giải protein trong hạt.............. 40
2.2.1 Protease A.. 41
2.2.2 Protease B.. 43
2.2.3 Serine endopeptidase C1..................................... 44
2.2.4 Endopeptidase chứa kim loại.............................. 44
2.2.5 Carboxypeptidase... 45
2.2.6 Aminopeptidase... 45
2.3 Sinh tổng hợp, lấp ráp, vận chuyển và phân giải
 protein dự trữ của hạt....................................... 45
2.3.1 Sinh tổng hợp, vận chuyển protein dự trữ và hình thành
 hạt protein ở cây hai lá mầm............................... 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Sinh tổng hợp, vận chuyển protein dự trữ và hình thành hạt protein ở các cây ngũ cốc</td>
<td>49</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Thuyết về sự thủy phân hạt chè và phân giải hoàn toàn protein trong hạt</td>
<td>51</td>
</tr>
<tr>
<td>2.4</td>
<td>Một số kết quả nghiên cứu về protein hạt tại Viện Công nghệ sinh học</td>
<td>53</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Nghiên cứu tính đa dạng của protein hạt các giống đậu tương</td>
<td>54</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Vật liệu đậu tương</td>
<td>55</td>
</tr>
<tr>
<td>2.4.1.2</td>
<td>Protein hạt đậu tương trên diện di SDS PAGE</td>
<td>59</td>
</tr>
<tr>
<td>2.4.1.3</td>
<td>Diện di hai chiều protein hạt đậu tương</td>
<td>63</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Protease và sự thủy phân protein dự trữ trong quá trình này mầm của hạt giống đậu tương M103</td>
<td>66</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Hoạt độ protease trong quá trình này mầm của hạt đậu tương</td>
<td>67</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Thành phần protease trong quá trình này mầm của hạt đậu tương</td>
<td>68</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Sự thủy phân protein hạt trong quá trình này mầm của hạt đậu tương</td>
<td>70</td>
</tr>
</tbody>
</table>

Chương 3. Protein và tính chịu hạn

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Hạn và tác động của hạn lên thực vật</td>
<td>75</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Hiển tượng khô</td>
<td>75</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Hạn do tác động môi trường</td>
<td>77</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Tác động của hạn</td>
<td>79</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Cơ chế phân từ liên quan đến tính chịu hạn</td>
<td>82</td>
</tr>
<tr>
<td>3.2</td>
<td>Protein LEA</td>
<td>86</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Phân loại protein LEA</td>
<td>87</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Nhóm protein LEA1-D19</td>
<td>87</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Nhóm protein LEA2-D11</td>
<td>89</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Nhóm protein LEA3-D7</td>
<td>89</td>
</tr>
<tr>
<td>3.2.1.4</td>
<td>Nhóm protein LEA4-D95</td>
<td>89</td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>Nhóm protein LEA4-D113</td>
<td>90</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Dehydrin</td>
<td>91</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Cấu trúc và tính chất chung</td>
<td>91</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Phân loại dehydrin</td>
<td>94</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Gen mã hóa cho dehydrin</td>
<td>95</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Định vị của dehydrin trong các loại mồ mồ bảo</td>
<td>96</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>Biến đổi sau dịch mã</td>
<td>97</td>
</tr>
<tr>
<td>3.2.2.6</td>
<td>Chức năng của dehydrin</td>
<td>98</td>
</tr>
<tr>
<td>3.3</td>
<td>Protein chuyển nước qua мàng</td>
<td>100</td>
</tr>
</tbody>
</table>
3.3.1 Cấu trúc protein chuyển nước qua màng.......................... 101
3.3.2 Các dạng protein chuyển nước qua màng ở thực vật........... 102
3.4 Điều hòa biểu hiện gen khi gặp hạn...............................105
3.4.1 Các yếu tố điều hòa phụ thuộc vào ABA.......................... 107
3.4.2 Các yếu tố điều hòa không phụ thuộc vào ABA............. 108
3.5 Các chất điều chỉnh áp suất thẩm thấu............................ 110
3.5.1 Glucose và các oligosaccharide................................. 111
3.5.2 Proline.. 113
3.6 Khả năng nâng cao tính chịu hạn bằng kỹ thuật gen..............115
3.7 Chọn tạo giống chống chịu hạn nhờ lập bản đồ gen................. 117
3.8 Một số kết quả nghiên cứu về protein liên quan đến tính chịu hạn tại Viện Công nghệ sinh học..................119
3.8.1 Nghiên cứu ảnh hưởng của áp suất thẩm thấu cao lên quá trình nảy mầm của hạt................................. 119
3.8.2 Nghiên cứu tính đa dạng sinh học của gen dehydrin ở đầu tương.. 123
3.8.2.1 Tách thiếu DNA từ một số loại thực vật.......................... 123
3.8.2.2 Phân lập gen dehydrin từ genome đầu tương........... 127
3.8.2.3 So sánh trình tự gen dehydrin các giống đầu tương.. 128
3.8.2.4 So sánh gen dehydrin đầu tương với các loại đầu khác... 131
3.8.3 Nghiên cứu tính đa dạng sinh học của gen dehydrin ở ngõ... 132
3.8.3.1 Nguyên liệu ngõ.. 132
3.8.3.2 Phân lập gen dehydrin ở ngõ.................................. 133
3.8.3.3 So sánh trình tự các gen dehydrin của ngõ............ 134
3.8.3.4 Intron của các gen dehydrin ở ngõ.......................... 136
Chương 4. Protein và tính chịu nồng............................. 141
4.1 Hiển tượng nồng và phân ứng của thực vật......................... 141
4.1.1 Hiển tượng nồng và tác động lên thực vật......................... 141
4.1.2 Khái niệm về môi giới phân tử.................................. 143
4.2 Các nhóm protein tốc nhiệt... 146
4.2.1 Hsp70... 147
4.2.2 Hsp60... 148
4.2.2.1 Phức hệ GroEL.. 149
4.2.2.2 Phức hệ TRiC.. 151
4.2.3 Hsp90... 152
4.2.4 Hsp100... 152
4.2.5 Protein tốc nhiệt nhỏ.. 154
4.3 Các môi giới phân tử tạo cấu trúc không gắn cho
4.3.1. Tạo cấu trúc không gian cho protein có chuỗi peptide tín hiệu... 156
4.3.2. Tạo cấu trúc không gian cho protein trong nguyên sinh chất... 158

4.4 Vai trò mỗi giới phân tử trong việc vận chuyển và tạo cấu trúc không gian cho protein trong các bảo quản. 160
4.4.1. Vận chuyển và tạo cấu trúc không gian trong hạch lập... 161
4.4.2. Vận chuyển và tạo cấu trúc không gian trong ty thể... 163
4.4.3. Vận chuyển và tạo cấu trúc không gian trong peroxisome... 164
4.4.4. Vận chuyển và tạo cấu trúc không gian trong nhân tế bào... 165

4.5 Sự phân giải protein... 167
4.5.1. Vai trò của sự phân giải protein trong tế bào... 167
4.5.2. Đặc điểm của sự phân giải protein trong các bảo quản... 168
4.5.3. Hệ ubiquitin – proteasome... 170

4.6 Điều hòa biểu hiện gen sốc nhiệt... 176

4.7 Một số nghiên cứu về protein liên quan đến tính chịu nồng ở Viện Công nghệ sinh học........... 179
4.7.1. Nghiên cứu ảnh hưởng của nhiệt độ cao lên quá trình nảy mam của hạt dầu tương... 179
4.7.2. Protein chịu nhiệt ở dầu tương... 181
4.7.2.1. Khảo sát sự thay đổi của protein chịu nhiệt trong quá trình nảy mam trên giống dầu tương chịu nóng M103... 182
4.7.2.2. Nghiên cứu protein chịu nhiệt trong phối mam của hạt một số giống dầu tương địa phương và đối trắc có khả năng chịu nóng, chịu hạn... 184
4.7.3. Nghiên cứu tính đa dạng sinh học của gen chaperonin ở dầu tương... 188
4.7.3.1. Phát hiện gen chaperonin CCT0 từ genome dầu tương... 189
4.7.3.2. Tách đong gen chaperonin CCT0 hai giống dầu tương M103 và Cúc Vàng... 191
4.7.3.3. Xác định trình tự nucleotide của gen chaperonin CCT0 hai giống dầu tương M103 và Cúc Vàng... 194
4.7.3.4. So sánh trình tự gen CCT0 giữa các giống dầu tương và các loại khác... 195

Chương 5. Tính chịu lạnh, tính chịu mặn, tính chịu ứng... 203
5.1 Protein và tính chịu lạnh... 203
5.1.1 Hiển tượng lạnh giá và tác động lên thực vật .. 203
5.1.2 Lipid mạch tế bào và khả năng chống chịu lạnh giá ... 204
5.1.3 Các chất điều chỉnh áp suất thấm thụ và protein chống lạnh giá 207
5.1.4 Sự thay đổi trong biểu hiện gen chống lạnh giá ... 207
5.2 Protein và tính chịu mặn... 208
5.2.1 Hiển tượng mặn muối và tác động lên thực vật ... 208
5.2.2 Loại bỏ các dạng ROS ... 210
5.2.3 Tăng cường các chất điều chỉnh áp suất thấm thụ ... 210
5.2.4 Các protein kiềm soát sự hấp thu ion Na⁺, K⁺, Ca²⁺ và hấp thu nước 211
5.2.5 Điều hòa biểu hiện gen chống chịu lạnh giá và mặn muối 215
5.2.6 Khả năng nâng cao tính chịu mặn và lạnh bằng kỹ thuật gen 216
5.3 Protein và tính chống chịu ứn.. 217
5.3.1 Hiển tượng ngập ứn và tác động lên thực vật ... 217
5.3.2 Quà trình chuyên hóa năng lượng khi bị ứn ... 218
5.3.3 Vai trò của các hormone ethylene, gibberellin và ABA................................. 220
Chương 6. Protein và tính chống chịu oxy hóa ... 223
6.1 Hiển tượng oxy hóa ở thực vật ... 223
6.2 Các dạng oxy hoạt hóa và tác động của chúng ... 224
6.2.1 Các dạng oxy hoạt hóa .. 224
6.2.2 Tác động của ROS .. 227
6.2.3 Hệ thống bảo vệ cây trồng khỏi tác động của oxy hóa 229
6.3 Các enzyme chống oxy hóa ... 230
6.3.1 Superoxide dismutase ... 230
6.3.2 Catalase ... 232
6.3.3 Các enzyme chuyển hóa ascorbate .. 232
6.3.3.1 Ascorbate peroxidase .. 232
6.3.3.2 Monodehydroascorbate reductase.. 234
6.3.3.3 Dehydroascorbate reductase .. 234
6.3.4 Các enzyme chuyển hóa glutathione ... 234
6.3.4.1 Tổng hợp glutathione .. 235
6.3.4.2 Phân giải glutathione ... 236
6.4 Các chất chống oxy hóa không có bản chất enzyme 237
6.4.1 Ascorbate ... 237
6.4.2 α-tocoferol .. 238
6.4.3 Carotenoid ... 238
6.5 Chu trình ascorbate-glutathione... 239
<table>
<thead>
<tr>
<th>Số ban</th>
<th>Tên chương</th>
<th>Trang</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Điều hòa biểu hiện gen chống oxy hóa</td>
<td>242</td>
</tr>
<tr>
<td>6.7</td>
<td>Nghiên cứu enzyme sử dụng biến nap gen</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Chương 7. Protein và tình kháng bệnh ở thực vật</td>
<td>247</td>
</tr>
<tr>
<td>7.1</td>
<td>Mảm bệnh và các dạng tương tác với thực vật</td>
<td>248</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Mảm bệnh thực vật</td>
<td>248</td>
</tr>
<tr>
<td>7.1.1.1</td>
<td>Nấm</td>
<td>249</td>
</tr>
<tr>
<td>7.1.1.2</td>
<td>Virus</td>
<td>251</td>
</tr>
<tr>
<td>7.1.1.3</td>
<td>Vi khuẩn</td>
<td>251</td>
</tr>
<tr>
<td>7.1.1.4</td>
<td>Tuyển trùng</td>
<td>252</td>
</tr>
<tr>
<td>7.1.1.5</td>
<td>Sâu hai cây</td>
<td>252</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Các dạng tương tác giữa thực vật và mảm bệnh</td>
<td>253</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Phân ứng bảo vệ của thực vật</td>
<td>255</td>
</tr>
<tr>
<td>7.1.3.1</td>
<td>ROS và các tín hiệu thứ cấp</td>
<td>256</td>
</tr>
<tr>
<td>7.1.3.2</td>
<td>Phân ứng mầm cảm đặc hiệu</td>
<td>258</td>
</tr>
<tr>
<td>7.1.3.3</td>
<td>Hiển tượng kháng bệnh và bản chất phân tử của chúng</td>
<td>258</td>
</tr>
<tr>
<td>7.2</td>
<td>Các protein liên quan đến mảm gây bệnh và protein kháng bệnh</td>
<td>259</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Protein liên quan đến mảm gây bệnh</td>
<td>259</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Các nhóm protein kháng bệnh</td>
<td>262</td>
</tr>
<tr>
<td>7.2.2.1</td>
<td>Nhóm LRR-TM</td>
<td>262</td>
</tr>
<tr>
<td>7.2.2.2</td>
<td>Nhóm LRR-TM-Kinase</td>
<td>263</td>
</tr>
<tr>
<td>7.2.2.3</td>
<td>Nhóm NB-LRR</td>
<td>264</td>
</tr>
<tr>
<td>7.2.2.4</td>
<td>Serine/threonine protein kinase</td>
<td>271</td>
</tr>
<tr>
<td>7.2.2.5</td>
<td>Toxin reductase</td>
<td>271</td>
</tr>
<tr>
<td>7.2.2.6</td>
<td>Thử thể liên kết với protein G</td>
<td>271</td>
</tr>
<tr>
<td>7.2.2.7</td>
<td>Protein Avr</td>
<td>271</td>
</tr>
<tr>
<td>7.3</td>
<td>Các thuyết về hoạt động của protein kháng bệnh</td>
<td>273</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Hoạt động của các protein kháng khuẩn</td>
<td>273</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Hoạt động của các protein kháng nấm</td>
<td>276</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Hoạt động của Cf9, protein kháng nấm ở cà chua</td>
<td>277</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Hoạt động của Pto, protein kháng khuẩn ở cà chua</td>
<td>279</td>
</tr>
<tr>
<td>7.4</td>
<td>Một số phương pháp phân lập gen kháng bệnh</td>
<td>280</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Kỹ thuật “Shortgun cloning”</td>
<td>280</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Phân lập gen dựa trên lập bản đồ liên kết chỉ thị phân tử</td>
<td>282</td>
</tr>
<tr>
<td>7.5</td>
<td>Ứng dụng sự tương tác giữa vi khuẩn và thực vật làm vector chuyển gen vào thực vật</td>
<td>285</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Agrobacterium – vi khuẩn gây khối u ở thực vật</td>
<td>285</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Sự tương tác Agrobacterium với tế bào thực vật khối đầu cho quá trình chuyển T-DNA vào thực vật</td>
<td>286</td>
</tr>
</tbody>
</table>
Chương 8. Các phương pháp nghiên cứu protein

8.1 Cách tiếp cận truyền thống trong nghiên cứu protein
8.2 Tách chiết protein tổng số
8.3 Phân đoạn protein theo tính hòa tan
8.4 Phân đoạn protein trên sắc ký cột
 8.4.1 Sắc ký tra đổi ion
 8.4.2 Sắc ký sàng phân tử (lọc gel)
 8.4.3 Sắc ký ái lực
8.5 Diện di trên polyacrylamide gel
 8.5.1 Diện di SDS PAGE
 8.5.2 Diện di hai chiều
8.6 Nhận dạng protein bằng sắc ký khối phổ
8.7 Xác định trình tự amino acid của protein
8.8 Nghiên cứu chức năng protein thông qua phân lập gen
 8.8.1 Tách chiết DNA, mRNA từ thực vật
 8.8.2 Nhận gen bằng PCR
 8.8.2.1 PCR cơ bản
 8.8.2.2 RT PCR
 8.8.3 Tách dòng gen
 8.8.4 Xác định trình tự gen
 8.8.5 Nghiên cứu so sánh trình tự amino acid
8.9 Biểu hiện và xác định mức độ biểu hiện của gen
 8.9.1 Real-time PCR và xác định mức độ biểu hiện gen
 8.9.2 Biểu hiện gen trong thực vật
 8.9.3 Xác định mức độ biểu hiện gen bằng lai Western
8.10 Tin sinh học trong nghiên cứu protein
 8.10.1 Cơ sở dữ liệu protein và nucleotide
 8.10.2 Cơ sở dữ liệu điện di hai chiều
Tài liệu tham khảo

Danh mục các thuật ngữ chuyên ngành và viết tắt