TABLE OF CONTENTS

Preface xvii

CHAPTER 1
Introduction to Materials Science and Engineering 2

1.1 Materials and Engineering 3
1.2 Materials Science and Engineering 6
1.3 Types of Materials 8
 1.3.1 Metallic materials 8
 1.3.2 Polymeric Materials 10
 1.3.3 Ceramic Materials 11
 1.3.4 Composite Materials 13
 1.3.5 Electronic Materials 15
1.4 Competition Among Materials 16
1.5 Recent Advances in Materials Science and Technology and Future Trends 18
 1.5.1 Smart Materials 18
 1.5.2 Nanomaterials 19
1.6 Design and Selection 20
1.7 Summary 21
1.8 Definitions 21
1.9 Problems 22
1.10 Materials Selection and Design Problems 23

CHAPTER 2
Atomic Structure and Bonding 24

2.1 The Structure of Atoms 25
2.2 Atomic Numbers and Atomic Masses 26
 2.2.1 Atomic Numbers 26
 2.2.2 Atomic Masses 26
2.3 The Electronic Structure of Atoms 29
 2.3.1 The Hydrogen Atom 29
 2.3.2 Quantum Numbers of Electrons of Atoms 33

2.3.3 Electronic Structure of Multielectron Atoms 35
2.3.4 Electronic Structure and Chemical Reactivity 39
Types of Atomic and Molecular Bonds 41
 2.4.1 Primary Atomic Bonds 42
 2.4.2 Secondary Atomic and Molecular Bonds 42
Ionic Bonding 42
 2.5.1 Ionic Bonding in General 42
 2.5.2 Interionic Forces for an Ion Pair 43
 2.5.3 Interionic Energies for an Ion Pair 46
 2.5.4 Ion Arrangements in Ionic Solids 47
 2.5.5 Bonding Energies of Ionic Solids 48
Covalent Bonding 49
 2.6.1 Covalent Bonding in the Hydrogen Molecule 49
 2.6.2 Covalent Bonding in Other Diatomic Molecules 50
 2.6.3 Covalent Bonding by Carbon 51
 2.6.4 Covalent Bonding in Carbon-Containing Molecules 53
 2.6.5 Benzene 53
Metalllic Bonding 55
Secondary Bonding 59
 2.8.1 Fluctuating Dipoles 60
 2.8.2 Permanent Dipoles 61
Mixed Bonding 62
 2.9.1 Ionic-Covalent Mixed Bonding 62
 2.9.2 Metallic-Covalent Mixed Bonding 63
 2.9.3 Metallic-Ionic Mixed Bonding 64
Summary 64
Definitions 65
Problems 66
Materials Selection and Design Problems 70
3.14 Definitions 115
3.15 Problems 116
3.16 Materials Selection and Design
Problems 122

CHAPTER 4
Solidification and Crystalline Imperfections 124

4.1 Solidification of Metals 125
4.1.1 The Formation of Stable Nuclei in Liquid Metals 127
4.1.2 Growth of Crystals in Liquid Metal and Formation of a Grain Structure 132
4.1.3 Grain Structure of Industrial Castings 133

4.2 Solidification of Single Crystals 134
4.3 Metallic Solid Solutions 138
4.3.1 Substitutional Solid Solutions 139
4.3.2 Interstitial Solid Solutions 141

4.4 Crystalline Imperfections 143
4.4.1 Point Defects 143
4.4.2 Line Defects (Dislocations) 144
4.4.3 Planar Defects 147
4.4.4 Volume Defects 150

4.5 Experimental Techniques for Identification of Microstructure and Defects 151
4.5.1 Optical Metallography, ASTM Grain Size, and Grain Diameter Determination 151
4.5.2 Scanning Electron Microscopy (SEM) 156
4.5.3 Transmission Electron Microscopy (TEM) 158
4.5.4 High-Resolution Transmission Electron Microscopy (HRTEM) 159
4.5.5 Scanning Probe Microscopes and Atomic Resolution 161

4.6 Summary 166
4.7 Definitions 166
4.8 Problems 168
4.9 Materials Selection and Design
Problems 170
Chapter 5
Thermally Activated Processes and Diffusion in Solids 172

5.1 Rate Processes in Solids 173
5.2 Atomic Diffusion in Solids 177
5.2.1 Diffusion in Solids in General 177
5.2.2 Diffusion Mechanisms 177
5.2.3 Steady-State Diffusion 180
5.2.4 Non-Steady-State Diffusion 182
5.3 Industrial Applications of Diffusion Processes 184
5.3.1 Case Hardening of Steel by Gas Carburizing 184
5.3.2 Impurity Diffusion into Silicon Wafers for Integrated Circuits 188
5.4 Effect of Temperature on Diffusion in Solids 191
5.5 Summary 195
5.6 Definitions 195
5.7 Problems 196
5.8 Materials Selection and Design Problems 198

Chapter 6
Mechanical Properties of Metals I 200

6.1 The Processing of Metals and Alloys 201
6.1.1 The Casting of Metals and Alloys 201
6.1.2 Hot and Cold Rolling of Metals and Alloys 203
6.1.3 Extrusion of Metals and Alloys 208
6.1.4 Forging 209
6.1.5 Other Metal-Forming Processes 211
6.2 Stress and Strain in Metals 212
6.2.1 Elastic and Plastic Deformation 213
6.2.2 Engineering Stress and Engineering Strain 213
6.2.3 Poisson's Ratio 216
6.2.4 Shear Stress and Shear Strain 216
6.3 The Tensile Test and the Engineering Stress-Strain Diagram 217
6.3.1 Mechanical Property Data Obtained from the Tensile Test and the Engineering Stress-Strain Diagram 220
6.3.2 Comparison of Engineering Stress-Strain Curves for Selected Alloys 225
6.3.3 True Stress and True Strain 225
6.4 Hardness and Hardness Testing 227
6.5 Plastic Deformation of Metal Single Crystals 229
6.5.1 Slipbands and Slip Lines on the Surface of Metal Crystals 229
6.5.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 232
6.5.3 Slip Systems 234
6.5.4 Critical Resolved Shear Stress for Metal Single Crystals 235
6.5.5 Schmid's Law 237
6.5.6 Twinning 240
6.6 Plastic Deformation of Polycrystalline Metals 242
6.6.1 Effect of Grain Boundaries on the Strength of Metals 242
6.6.2 Effect of Plastic Deformation on Grain Shape and Dislocation Arrangements 244
6.6.3 Effect of Cold Plastic Deformation on Increasing the Strength of Metals 246
6.7 Solid-Solution Strengthening of Metals 247
6.8 Recovery and Recrystallization of Plastically Deformed Metals 249
6.8.1 Structure of a Heavily Cold-Worked Metal before Reheating 250
6.8.2 Recovery 251
6.8.3 Recrystallization 252
6.9 Superplasticity in Metals 257
6.10 Nanocrystalline Metals 259
6.11 Summary 261
6.12 Definitions 262
6.13 Problems 263
6.14 Materials Selection and Design Problems 268
CHAPTER 7
Mechanical Properties of Metals II 270

7.1 Fracture of Metals 271
 7.1.1 Ductile Fracture 272
 7.1.2 Brittle Fracture 273
 7.1.3 Toughness and Impact Testing 276
 7.1.4 Ductile to Brittle Transition Temperature 276
 7.1.5 Fracture Toughness 279

7.2 Fatigue of Metals 281
 7.2.1 Cyclic Stresses 285
 7.2.2 Basic Structural Changes that Occur in a Ductile Metal in the Fatigue Process 286
 7.2.3 Some Major Factors that Affect the Fatigue Strength of a Metal 287

7.3 Fatigue Crack Propagation Rate 288
 7.3.1 Correlation of Fatigue Crack Propagation with Stress and Crack Length 288
 7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 290
 7.3.3 Fatigue Life Calculations 292

7.4 Creep and Stress Rupture of Metals 294
 7.4.1 Creep of Metals 294
 7.4.2 The Creep Test 296
 7.4.3 Creep-Rupture Test 297

7.5 Graphical representation of Creep- and Stress-Rupture Time-Temperature Data Using the Larson-Miller Parameter 298

7.6 A Case Study in Failure of Metallic Components 300

7.7 Recent Advances and Future Directions in Improving the Mechanical Performance of Metals 303
 7.7.1 Improving Ductility and Strength Simultaneously 303
 7.7.2 Fatigue Behavior in Nanocrystalline Metals 305

7.8 Summary 305
7.9 Definitions 306

7.10 Problems 307
7.11 Materials Selection and Design Problems 309

CHAPTER 8
Phase Diagrams 310

8.1 Phase Diagrams of Pure Substances 311
8.2 Gibbs Phase Rule 313
8.3 Cooling Curves 314
8.4 Binary Isomorphous Alloy Systems 315
8.5 The Lever Rule 318
8.6 Nonequilibrium Solidification of Alloys 322
8.7 Binary Eutectic Alloy Systems 326
8.8 Binary Peritectic Alloy Systems 333
8.9 Binary Monotectic Systems 338
8.10 Invariant Reactions 339
8.11 Phase Diagrams with Intermediate Phases and Compounds 341
8.12 Ternary Phase Diagrams 345
8.13 Summary 348
8.14 Definitions 349
8.15 Problems 351
8.16 Materials Selection and Design Problems 355

CHAPTER 9
Engineering Alloys 358

9.1 Production of Iron and Steel 360
 9.1.1 Production of Pig Iron in a Blast Furnace 360
 9.1.2 Steelmaking and Processing of Major Steel Product Forms 361

9.2 The Iron-Iron-Carbide System 363
 9.2.1 The Iron-Iron-Carbide Phase Diagram 363
 9.2.2 Solid Phases in the Fe-Fe₃C Phase Diagram 363
 9.2.3 Invariant Reactions in the Fe-Fe₃C Phase Diagram 364
 9.2.4 Slow Cooling of Plain-Carbon Steels 366
9.3 Heat Treatment of Plain-Carbon Steels 373
 9.3.1 Martensite 373
 9.3.2 Isothermal Decomposition of Austenite 378
 9.3.3 Continuous-Cooling Transformation Diagram for a Eutectoid Plain-Carbon Steel 383
 9.3.4 Annealing and Normalizing of Plain-Carbon Steels 386
 9.3.5 Tempering of Plain-Carbon Steels 387
 9.3.6 Classification of Plain-Carbon Steels and Typical Mechanical Properties 391
9.4 Low-Alloy Steels 392
 9.4.1 Classification of Alloy Steels 392
 9.4.2 Distribution of Alloying Elements in Alloy Steels 394
 9.4.3 Effects of Alloying Elements on the Eutectoid Temperature of Steels 395
 9.4.4 Hardenability 396
 9.4.5 Typical Mechanical Properties and Applications for Low-Alloy Steels 401
9.5 Aluminum Alloys 401
 9.5.1 Precipitation Strengthening (Hardening) 403
 9.5.2 General Properties of Aluminum and Its Production 410
 9.5.3 Wrought Aluminum Alloys 411
 9.5.4 Aluminum Casting Alloys 416
9.6 Copper Alloys 418
 9.6.1 General Properties of Copper 418
 9.6.2 Production of Copper 419
 9.6.3 Classification of Copper Alloys 419
 9.6.4 Wrought Copper Alloys 422
9.7 Stainless Steels 424
 9.7.1 Ferritic Stainless Steels 424
 9.7.2 Martensitic Stainless Steels 425
 9.7.3 Austenitic Stainless Steels 427
9.8 Cast Irons 429
 9.8.1 General Properties 429
 9.8.2 Types of Cast Irons 429
 9.8.3 White Cast Iron 429
 9.8.4 Gray Cast Iron 431
 9.8.5 Ductile Cast Irons 432
 9.8.6 Malleable Cast Irons 435
9.9 Magnesium, Titanium, and Nickel Alloys 436
 9.9.1 Magnesium Alloys 436
 9.9.2 Titanium Alloys 438
 9.9.3 Nickel Alloys 440
9.10 Special-Purpose Alloys and Applications 441
 9.10.1 Intermetallics 441
 9.10.2 Shape-Memory Alloys 442
 9.10.3 Amorphous Metals 446
9.11 Metals in Biomedical Applications—Biometals 448
 9.11.1 Stainless Steels 449
 9.11.2 Cobalt-Based Alloys 449
 9.11.3 Titanium Alloys 451
9.12 Some Issues in the Orthopedic Application of Metals 452
9.13 Summary 454
9.14 Definitions 455
9.15 Problems 457
9.16 Materials Selection and Design Problems 465

CHAPTER 10
Polymeric Materials 468
10.1 Introduction 469
10.2 Polymerization Reactions 471
 10.2.1 Covalent Bonding Structure of an Ethylene Molecule 471
 10.2.2 Covalent Bonding Structure of an Activated Ethylene Molecule 472
 10.2.3 General Reaction for the Polymerization of Polyethylene and the Degree of Polymerization 473
 10.2.4 Chain Polymerization Steps 473
 10.2.5 Average Molecular Weight for Thermoplastics 475
10.2.6 Functionality of a Monomer 476
10.2.7 Structure of Noncrystalline Linear Polymers 476
10.2.8 Vinyl and Vinylidene Polymers 478
10.2.9 Homopolymers and Copolymers 479
10.2.10 Other Methods of Polymerization 482

10.3 Industrial Polymerization Methods 484

10.4 Crystallinity and Stereoisomerism in Some Thermoplastics 486
10.4.1 Solidification of Noncrystalline Thermoplastics 486
10.4.2 Solidification of Partly Crystalline Thermoplastics 486
10.4.3 Structure of Partly Crystalline Thermoplastic Materials 488
10.4.4 Stereoisomerism in Thermoplastics 489
10.4.5 Ziegler and Natta Catalysts 490

10.5 Processing of Plastic Materials 491
10.5.1 Processes Used for Thermoplastic Materials 492
10.5.2 Processes Used for Thermosetting Materials 496

10.6 General-Purpose Thermoplastics 498
10.6.1 Polyethylene 500
10.6.2 Polyvinyl Chloride and Copolymers 503
10.6.3 Polypolyethylene 505
10.6.4 Polystyrene 505
10.6.5 Polyacrylonitrile 506
10.6.6 Styrene-Acrylonitrile (SAN) 507
10.6.7 ABS 507
10.6.8 Polymethyl Methacrylate (PMMA) 509
10.6.9 Fluoroplastics 510

10.7 Engineering Thermoplastics 511
10.7.1 Polyamides (Nylons) 512
10.7.2 Polycarbonate 515
10.7.3 Phenylene Oxide-Based Resins 516
10.7.4 Acetals 517
10.7.5 Thermoplastic Polyesters 518
10.7.6 Polypolyethylene Sulphide 519
10.7.7 Polyetherimide 520
10.7.8 Polymer Alloys 521

10.8 Thermosetting Plastics (Thermosets) 521
10.8.1 Phenolics 523
10.8.2 Epoxy Resins 525
10.8.3 Unsaturated Polyessters 527
10.8.4 Amino Resins (Ureas and Melamines) 529

10.9 Elastomers (Rubbers) 531
10.9.1 Natural Rubber 531
10.9.2 Synthetic Rubbers 534
10.9.3 Properties of Polychloroprene Elastomers 536
10.9.4 Vulcanization of Polychloroprene Elastomers 536

10.10 Deformation and Strengthening of Plastic Materials 539
10.10.1 Deformation Mechanisms for Thermoplastics 539
10.10.2 Strengthening of Thermoplastics 541
10.10.3 Strengthening of Thermosetting Plastics 545
10.10.4 Effect of Temperature on the Strength of Plastic Materials 545

10.11 Creep and Fracture of Polymeric Materials 546
10.11.1 Creep of Polymeric Materials 546
10.11.2 Stress Relaxation of Polymeric Materials 547
10.11.3 Fracture of Polymeric Materials 550

10.12 Polymers in Biomedical Applications—Biopolymers 552
10.12.1 Cardiovascular Applications of Polymers 553
10.12.2 Ophthalmic Applications 554
10.12.3 Drug-Delivery Systems 555
10.12.4 Suture Materials 556
10.12.5 Orthopedic Applications 556

10.13 Summary 557

10.14 Definitions 558

10.15 Problems 560

10.16 Materials Selection and Design Problems 570
Table of Contents

Chapter 11

Ceramics 572

11.1 Introduction 573
11.2 Simple Ceramic Crystal Structures 575
 11.2.1 Ionic and Covalent Bonding in Simple Ceramic Compounds 575
 11.2.2 Simple Ionic Arrangements Found in Ionically Bonded Solids 576
 11.2.3 Cesium Chloride (CsCl) Crystal Structure 579
 11.2.4 Sodium Chloride (NaCl) Crystal Structure 580
 11.2.5Interstitial Sites in FCC and HCP Crystal Lattices 584
 11.2.6 Zinc Blende (ZnS) Crystal Structure 586
 11.2.7 Calcium Fluoride (CaF$_2$) Crystal Structure 588
 11.2.8 Antifluorite Crystal Structure 590
 11.2.9 Corundum (Al$_2$O$_3$) Crystal Structure 590
 11.2.10 Spinel (MgAl$_2$O$_4$) Crystal Structure 590
 11.2.11 Perovskite (CaTiO$_3$) Crystal Structure 590
 11.2.12 Carbon and Its Allotropes 591

11.3 Silicate Structures 595
 11.3.1 Basic Structural Unit of the Silicate Structures 595
 11.3.2 Island, Chain, and Ring Structures of Silicates 595
 11.3.3 Sheet Structures of Silicates 595
 11.3.4 Silicate Networks 597

11.4 Processing of Ceramics 598
 11.4.1 Materials Preparation 599
 11.4.2 Forming 599
 11.4.3 Thermal Treatments 604

11.5 Traditional and Engineering Ceramics 606
 11.5.1 Traditional Ceramics 606
 11.5.2 Engineering Ceramics 609

11.6 Mechanical Properties of Ceramics 611
 11.6.1 General 611
 11.6.2 Mechanisms for the Deformation of Ceramic Materials 611
 11.6.3 Factors Affecting the Strength of Ceramic Materials 612
 11.6.4 Toughness of Ceramic Materials 613
 11.6.5 Transformation Toughening of Partially Stabilized Zirconia (PSZ) 615
 11.6.6 Fatigue Failure of Ceramics 615
 11.6.7 Ceramic Abrasive Materials 617

11.7 Thermal Properties of Ceramics 618
 11.7.1 Ceramic Refractory Materials 619
 11.7.2 Acidic Refractories 620
 11.7.3 Basic Refractories 620
 11.7.4 Ceramic Tile Insulation for the Space Shuttle Orbiter 620

11.8 Glasses 620
 11.8.1 Definition of a Glass 622
 11.8.2 Glass Transition Temperature 622
 11.8.3 Structure of Glasses 623
 11.8.4 Composition of Glasses 624
 11.8.5 Viscous Deformation of Glasses 626
 11.8.6 Forming Methods for Glasses 628
 11.8.7 Tempered Glass 630
 11.8.8 Chemically Strengthened Glass 630

11.9 Ceramic Coatings and Surface Engineering 632
 11.9.1 Silicate Glasses 632
 11.9.2 Oxides and Carbides 632

11.10 Ceramics in Biomedical Applications 634
 11.10.1 Alumina in Orthopedic Implants 634
 11.10.2 Alumina in Dental Implants 636
 11.10.3 Ceramic Implants and Tissue Connectivity 636

11.11 Nanotechnology and Ceramics 637

11.12 Summary 639

11.13 Definitions 640

11.14 Problems 642

11.15 Materials Selection and Design Problems 646
<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Composite Materials</th>
<th>648</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>12.2 Fibers for Reinforced-Plastic Composite Materials</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>12.2.1 Glass Fibers for Reinforcing Plastic Resins</td>
<td>651</td>
<td></td>
</tr>
<tr>
<td>12.2.2 Carbon Fibers for Reinforced Plastics</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td>12.2.3 Aramid Fibers for Reinforcing Plastic Resins</td>
<td>654</td>
<td></td>
</tr>
<tr>
<td>12.2.4 Comparison of Mechanical Properties of Carbon, Aramid, and Glass Fibers for Reinforced-Plastic Composite Materials</td>
<td>655</td>
<td></td>
</tr>
<tr>
<td>12.3 Fiber-Reinforced-Plastic Composite Materials</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>12.3.1 Matrix Materials for Fiber-Reinforced Plastic Composite Materials</td>
<td>657</td>
<td></td>
</tr>
<tr>
<td>12.3.2 Fiber-Reinforced-Plastic Composite Materials</td>
<td>658</td>
<td></td>
</tr>
<tr>
<td>12.3.3 Equations for Elastic Modulus of a Lamellar Continuous-Fiber-Plastic Matrix Composite for Isotrain and Isostress Conditions</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>12.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>12.4.1 Hand Lay-Up Process</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>12.4.2 Spray-Up Process</td>
<td>667</td>
<td></td>
</tr>
<tr>
<td>12.4.3 Vacuum Bag–Autoclave Process</td>
<td>668</td>
<td></td>
</tr>
<tr>
<td>12.4.4 Filament-Winding Process</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td>12.5 Closed-Mold Processes for Fiber-Reinforced Plastic Composite Materials</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>12.5.1 Compression and Injection Molding</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>12.5.2 The Sheet-Molding Compound (SMC) Process</td>
<td>672</td>
<td></td>
</tr>
<tr>
<td>12.5.3 Continuous-Prorusion Process</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>12.6 Concrete</td>
<td>674</td>
<td></td>
</tr>
<tr>
<td>12.6.1 Portland Cement</td>
<td>675</td>
<td></td>
</tr>
<tr>
<td>12.6.2 Mixing Water for Concrete</td>
<td>678</td>
<td></td>
</tr>
<tr>
<td>12.6.3 Aggregates for Concrete</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>12.6.4 Air Entrainment</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>12.6.5 Compressive Strength of Concrete</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>12.6.6 Proportioning of Concrete Mixtures</td>
<td>679</td>
<td></td>
</tr>
<tr>
<td>12.6.7 Reinforced and Prestressed Concrete</td>
<td>682</td>
<td></td>
</tr>
<tr>
<td>12.6.8 Prestressed Concrete</td>
<td>683</td>
<td></td>
</tr>
<tr>
<td>12.7 Asphalt and Asphalt Mixes</td>
<td>684</td>
<td></td>
</tr>
<tr>
<td>12.8 Wood</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>12.8.1 Macrostructure of Wood</td>
<td>685</td>
<td></td>
</tr>
<tr>
<td>12.8.2 Microstructure of Softwoods</td>
<td>688</td>
<td></td>
</tr>
<tr>
<td>12.8.3 Microstructure of Hardwoods</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>12.8.4 Cell-Wall Ultrastructure</td>
<td>690</td>
<td></td>
</tr>
<tr>
<td>12.8.5 Properties of Wood</td>
<td>692</td>
<td></td>
</tr>
<tr>
<td>12.9 Sandwich Structures</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>12.9.1 Honeycomb Sandwich Structure</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>12.9.2 Cladded Metal Structures</td>
<td>695</td>
<td></td>
</tr>
<tr>
<td>12.10 Metal-Matrix and Ceramic-Matrix Composites</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>12.10.1 Metal-Matrix Composites (MMCs)</td>
<td>696</td>
<td></td>
</tr>
<tr>
<td>12.10.2 Ceramic-Matrix Composites (CMCs)</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>12.10.3 Ceramic Composites and Nanotechnology</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>12.11 Bone: A Natural Composite Material</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>12.11.1 Composition</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>12.11.2 Macrostructure</td>
<td>703</td>
<td></td>
</tr>
<tr>
<td>12.11.3 Mechanical Properties</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>12.11.4 Biomechanics of Bone Fracture</td>
<td>706</td>
<td></td>
</tr>
<tr>
<td>12.11.5 Viscoelasticity of the Bone</td>
<td>707</td>
<td></td>
</tr>
<tr>
<td>12.11.6 Bone Remodeling</td>
<td>707</td>
<td></td>
</tr>
<tr>
<td>12.11.7 Nanotechnology and Bone Repair</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>12.12 Summary</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>12.13 Definitions</td>
<td>709</td>
<td></td>
</tr>
<tr>
<td>12.14 Problems</td>
<td>712</td>
<td></td>
</tr>
<tr>
<td>12.15 Materials Selection and Design Problems</td>
<td>716</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Corrosion</th>
<th>718</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 General</td>
<td>719</td>
<td></td>
</tr>
<tr>
<td>13.2 Electrochemical Corrosion of Metals</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>13.2.1 Oxidation-Reduction Reactions</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>13.2.2 Standard Electrode Half-Cell Potentials for Metals</td>
<td>722</td>
<td></td>
</tr>
</tbody>
</table>
13.3 Galvanic Cells 724
13.3.1 Macroscopic Galvanic Cells with Electrolytes That Are One Molar 724
13.3.2 Galvanic Cells with Electrolytes That Are Not One Molar 726
13.3.3 Galvanic Cells with Acid or Alkaline Electrolytes with No Metal Ions Present 727
13.3.4 Microscopic Galvanic Cell Corrosion of Single Electrodes 729
13.3.5 Concentration Galvanic Cells 730
13.3.6 Galvanic Cells Created by Differences in Composition, Structure, and Stress 733
13.4 Corrosion Rates (Kinetics) 735
13.4.1 Rate of Uniform Corrosion or Electroplating of a Metal in an Aqueous Solution 736
13.4.2 Corrosion Reactions and Polarization 739
13.4.3 Passivation 742
13.4.4 The Galvanic Series 743
13.5 Types of Corrosion 745
13.5.1 Uniform or General Attack Corrosion 745
13.5.2 Galvanic or Two-Metal Corrosion 745
13.5.3 Pitting Corrosion 746
13.5.4 Crevice Corrosion 749
13.5.5 Intergranular Corrosion 751
13.5.6 Stress Corrosion 753
13.5.7 Erosion Corrosion 756
13.5.8 Cavitation Damage 756
13.5.9 Fretting Corrosion 757
13.5.10 Selective Leaching 757
13.5.11 Hydrogen Damage 758
13.6 Oxidation of Metals 759
13.6.1 Protective Oxide Films 759
13.6.2 Mechanisms of Oxidation 761
13.6.3 Oxidation Rates (Kinetics) 762
13.7 Corrosion Control 764
13.7.1 Materials Selection 764
13.7.2 Coatings 765
13.7.3 Design 766
13.7.4 Alteration of Environment 767
13.7.5 Cathodic and Anodic Protection 768
13.8 Summary 770
13.9 Definitions 770
13.10 Problems 771
13.11 Materials Selection and Design Problems 776

CHAPTER 14
Electrical Properties of Materials 778
14.1 Electrical Conduction in Metals 779
14.1.1 The Classical Model for Electrical Conduction in Metals 779
14.1.2 Ohm’s Law 781
14.1.3 Drift Velocity of Electrons in a Conducting Metal 785
14.1.4 Electrical Resistivity of Metals 786
14.2 Energy-Band Model for Electrical Conduction 790
14.2.1 Energy-Band Model for Metals 790
14.2.2 Energy-Band Model for Insulators 792
14.3 Intrinsic Semiconductors 792
14.3.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 792
14.3.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 793
14.3.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 794
14.3.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 795
14.3.5 Effect of Temperature on Intrinsic Semiconductivity 797
14.4 Extrinsic Semiconductors 799
14.4.1 n-Type (Negative-Type) Extrinsic Semiconductors 799
14.4.2 p-Type (Positive-Type) Extrinsic Semiconductors 801
14.4.3 Doping of Extrinsic Silicon Semiconductor Material 803
14.4.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 803
14.4.5 Effect of Total Ionized Impurity Concentration on the Mobility of Charge Carriers in Silicon at Room Temperature 806
14.4.6 Effect of Temperature on the Electrical Conductivity of Extrinsic Semiconductors 807

14.5 Semiconductor Devices 809
14.5.1 The pn Junction 810
14.5.2 Some Application for pn Junction Diodes 813
14.5.3 The Bipolar Junction Transistor 815

14.6 Microelectronics 816
14.6.1 Microelectronic Planar Bipolar Transistors 818
14.6.2 Microelectronic Planar Field-Effect Transistors 819
14.6.3 Fabrication of Microelectronic Integrated Circuits 821

14.7 Compound Semiconductors 828

14.8 Electrical Properties of Ceramics 831
14.8.1 Basic Properties of Dielectrics 831
14.8.2 Ceramic Insulator Materials 834
14.8.3 Ceramic Materials for Capacitors 835
14.8.4 Ceramic Semiconductors 836
14.8.5 Ferroelectric Ceramics 838

14.9 Nanoelectronics 841

14.10 Summary 842
14.11 Definitions 843
14.12 Problems 846
14.13 Materials Selection and Design Problems 850

Chapter 15
Optical Properties and Superconductive Materials 852

15.1 Introduction 853
15.2 Light and the Electromagnetic Spectrum 853
15.3 Refraction of Light 856
15.3.1 Index of Refraction 856
15.3.2 Snell’s Law of Light Refraction 857
15.4 Absorption, Transmission, and Reflection of Light 859
15.4.1 Metals 859
15.4.2 Silicate Glasses 859
15.4.3 Plastics 862
15.4.4 Semiconductors 862

15.5 Luminescence 863
15.5.1 Photoluminescence 864
15.5.2 Cathodoluminescence 864

15.6 Stimulated Emission of Radiation and Lasers 866
15.6.1 Types of Lasers 868

15.7 Optical Fibers 870
15.7.1 Light Loss in Optical Fibers 870
15.7.2 Single-Mode and Multimode Optical Fibers 871
15.7.3 Fabrication of Optical Fibers 872
15.7.4 Modern Optical-Fiber Communication Systems 874

15.8 Superconducting Materials 875
15.8.1 The Superconducting State 875
15.8.2 Magnetic Properties of Superconductors 876
15.8.3 Current Flow and Magnetic Fields in Superconductors 878
15.8.4 High-Current, High-Field Superconductors 879
15.8.5 High Critical Temperature (\(T_c\)) Superconducting Oxides 881

15.9 Definitions 883
15.10 Problems 884
15.11 Materials Selection and Design Problems 886

Chapter 16
Magnetic Properties 888

16.1 Introduction 889
16.2 Magnetic Fields and Quantities 889
16.2.1 Magnetic Fields 889
16.2.2 Magnetic Induction 892
16.2.3 Magnetic Permeability 892
16.2.4 Magnetic Susceptibility 894
Table of Contents

16.3 Types of Magnetism 894
 16.3.1 Diamagnetism 895
 16.3.2 Paramagnetism 895
 16.3.3 Ferromagnetism 895
 16.3.4 Magnetic Moment of a Single Unpaired Atomic Electron 897
 16.3.5 Antiferromagnetism 899
 16.3.6 Ferrimagnetism 899

16.4 Effect of Temperature on Ferromagnetism 899

16.5 Ferromagnetic Domains 900

16.6 Types of Energies That Determine the Structure of Ferromagnetic Domains 902
 16.6.1 Exchange Energy 902
 16.6.2 Magnetostatic Energy 903
 16.6.3 Magnetocrystalline Anisotropy Energy 903
 16.6.4 Domain Wall Energy 904
 16.6.5 Magnetostrictive Energy 905

16.7 The Magnetization and Demagnetization of a Ferromagnetic Metal 907

16.8 Soft Magnetic Materials 908
 16.8.1 Desirable Properties for Soft Magnetic Materials 909
 16.8.2 Energy Losses for Soft Magnetic Materials 909
 16.8.3 Iron-Silicon Alloys 910
 16.8.4 Metallic Glasses 911
 16.8.5 Nickel-Iron Alloys 912

16.9 Hard Magnetic Materials 915
 16.9.1 Properties of Hard Magnetic Materials 915
 16.9.2 Alnico Alloys 917
 16.9.3 Rare earth Alloys 919

16.9.4 Neodymium-Iron-Boron Magnetic Alloys 921

16.9.5 Iron-Chromium-Cobalt Magnetic Alloys 921

16.10 Ferrites 923
 16.10.1 Magnetically Soft Ferrites 923
 16.10.2 Magnetically Hard Ferrites 928

16.11 Summary 928

16.12 Definitions 929

16.13 Problems 932

16.14 Materials Selection and Design Problems 936

APPENDIX I
Important Properties of Selected Engineering Materials 937

APPENDIX II
Some Properties of Selected Elements 992

APPENDIX III
Ionic Radii of the Elements 994

APPENDIX IV
Selected Physical Quantities and Their Units 997

References for Further Study by Chapter 999

Glossary 1002

Answers 1013

Index 1016